Retrieval-Augmented Generation (RAG) with Python Code

The Imperative for Knowledge Grounding in Large Language Models

The advent of Large Language Models (LLMs) has marked a revolutionary milestone in artificial intelligence, demonstrating remarkable capabilities in natural language understanding and generation.1 However, the very architecture that grants them their fluency also imposes fundamental limitations. These inherent constraints, namely the static nature of their knowledge and their propensity for factual invention, have created a critical need for a framework that can ground these models in verifiable, real-world information. Retrieval-Augmented Generation (RAG) has emerged as the definitive solution to this challenge, transforming LLMs from powerful but sometimes unreliable systems into trustworthy, enterprise-ready tools.2

The Parametric Knowledge Boundary

The knowledge of a standard LLM is “parametric,” meaning it is encoded entirely within the model’s internal parameters (its weights and biases) during a finite training period.4 This training process relies on a massive but static dataset, which becomes frozen in time upon the model’s completion. This creates a “knowledge cutoff,” an informational event horizon beyond which the model has no awareness.3 Consequently, when queried about events, discoveries, or data that emerged after its training concluded, an LLM is fundamentally incapable of providing an informed response and may instead generate outdated or inaccurate information.8

This limitation is particularly acute in dynamic enterprise environments where the freshness and relevance of information are paramount for decision-making.5 Furthermore, general-purpose LLMs, trained on broad public data, inherently lack depth in specialized domains and have no access to private or proprietary organizational knowledge. This data is inaccessible during training due to its confidential nature or because it is too niche to be included in a general corpus, rendering the LLM ineffective for many internal business use cases.8

The Challenge of AI Hallucination

A direct consequence of the parametric knowledge boundary is the phenomenon of “hallucination,” also known as confabulation. This is defined as the tendency of an LLM to generate responses that are plausible-sounding, coherent, and confidently delivered but are factually incorrect or entirely fabricated.3 This behavior stems from several root causes. When faced with a query that falls into a gap in its training data or lies beyond its knowledge cutoff, the model attempts to extrapolate from learned patterns, essentially making an educated guess that prioritizes linguistic plausibility over factual truth.6 At its core, an LLM is a pattern-prediction engine, not a truth-seeking one; it lacks any native mechanism to fact-check its own output against external, real-time sources.6

While amusing in casual contexts, hallucinations represent a significant liability in professional settings. The framing of this issue has evolved from a purely technical limitation to a critical business risk. In academic literature, hallucination is often described as a model flaw.3 However, in enterprise and industry contexts, the focus shifts to the severe consequences of this flaw: the spread of misinformation, the potential leakage of sensitive data patterns, and the reputational damage that follows.1 In high-stakes “Your Money or Your Life” (YMYL) domains such as healthcare, finance, and legal services, a single hallucinated response can have dire consequences.1 This reframing of hallucination from a “bug” to a “risk” explains the strategic imperative behind RAG’s rapid adoption. RAG is not merely a tool for improving performance; it is a foundational component of responsible AI, providing a mechanism for governance, auditability, and risk mitigation by ensuring that AI-generated content is traceable to a verifiable source.1

Introducing Retrieval-Augmented Generation (RAG): The Solution Framework

Retrieval-Augmented Generation is an AI framework specifically designed to address these fundamental LLM limitations.9 The core principle of RAG is to synergistically combine the LLM’s powerful, intrinsic parametric knowledge with the vast, dynamic, and non-parametric information stored in external knowledge bases.4 The framework operates by redirecting the LLM’s process. Instead of immediately generating a response from its internal memory, a RAG system first retrieves relevant, up-to-date, and authoritative information from a specified external data source.5 This retrieved context is then provided to the LLM along with the original query, effectively “grounding” the model’s subsequent output in verifiable facts.6 This paradigm shift enhances the accuracy, credibility, and timeliness of LLM-generated content, transforming them into more reliable and valuable assets for knowledge-intensive tasks.1

The Anatomy of a Retrieval-Augmented Generation System

A RAG system is not a monolithic entity but a sophisticated pipeline composed of distinct offline and online phases. The offline phase involves preparing the knowledge base for efficient search, while the online phase executes in real-time to answer a user’s query. Understanding this anatomy is crucial for building and optimizing robust RAG applications.

Architectural Overview and Diagram

The RAG pattern is composed of two main processes: the “Ingestion” or “Indexing” process, which happens offline to prepare the data, and the “Inference” or “Query” process, which happens in real-time when a user asks a question.27 The following diagram illustrates the complete end-to-end architecture.

Code snippet

graph TD
    subgraph “Offline: Data Ingestion & Indexing Pipeline”
        A –> B(Load & Chunk);
        B –> C{Embedding Model};
        C –> D;
    end

    subgraph “Online: Real-time Inference Pipeline”
        E[User Query] –> F{Embedding Model};
        F –> G(Similarity Search);
        D –> G;
        G –> H(Augmented Prompt <br>);
        H –> I{LLM <br> (Generator)};
        I –> J;
    end

    style A fill:#D6EAF8,stroke:#333,stroke-width:2px
    style D fill:#D1F2EB,stroke:#333,stroke-width:2px
    style E fill:#FEF9E7,stroke:#333,stroke-width:2px
    style J fill:#E8F8F5,stroke:#333,stroke-width:2px

Architectural Flow Description:

  1. Data Ingestion (Offline): The process begins by sourcing data from various external locations, such as document repositories, databases, or APIs.66 This data is loaded, cleaned, and broken down into smaller, semantically coherent “chunks”.20 Each chunk is then processed by an embedding model, which converts the text into a numerical vector representation.20 These vector embeddings are stored and indexed in a specialized vector database, creating a searchable knowledge library.20
  2. Inference (Online): When a user submits a query, the real-time pipeline is activated.66 The user’s query is converted into a vector embedding using the same model from the ingestion phase.8 The system then performs a similarity search in the vector database to find the indexed data chunks that are most semantically relevant to the query.20 This retrieved information is then combined with the original user query to create an “augmented prompt”.8 This enriched prompt, now containing both the question and the factual context, is sent to the LLM (the generator), which synthesizes the information to produce a final, factually grounded response.19

The Data Ingestion and Indexing Pipeline (The “Offline” Phase)

Before a RAG system can answer any questions, its external knowledge must be meticulously prepared and indexed. This process is foundational to the system’s ultimate performance.

  1. Document Loading and Preprocessing: The process begins by sourcing data from a variety of locations, which can include document repositories, databases, or APIs.17 This raw data is then preprocessed, a cleaning step that may involve removing stop words, normalizing text, and eliminating duplicate information to ensure the quality of the knowledge base.9
  2. Chunking Strategies: Since LLMs have finite context windows and operate more effectively on focused pieces of text, large documents must be broken down into smaller, semantically coherent “chunks”.3 The choice of chunking strategy is a critical design decision. Common approaches include fixed-size chunking (e.g., every 256 tokens), sentence-based chunking, or more advanced custom methods that respect the logical structure of a document (e.g., breaking at sections or paragraphs).19
  3. Embedding Generation: Each text chunk is then passed through an embedding model, typically a transformer-based model like BERT.21 This model converts the text into a high-dimensional numerical vector, known as a vector embedding.17 This embedding captures the semantic meaning of the chunk, allowing the system to search for information based on conceptual similarity rather than simple keyword matching.3
  4. Vector Databases and Indexing: The generated vector embeddings are stored and indexed in a specialized vector database.3 These databases, such as Faiss, Qdrant, or ChromaDB, are highly optimized for performing efficient vector similarity searches, enabling the system to rapidly find the chunks whose semantic meaning is closest to that of a user’s query.20

The Core RAG Workflow: From Query to Response (The “Online” Phase)

Once the knowledge base is indexed, the system is ready to handle user queries through a real-time, multi-phase workflow.

Phase 1: The Retriever

The retriever’s responsibility is to find the most relevant pieces of information from the indexed knowledge base.

  • Query Encoding: When a user submits a query, it is transformed into a vector embedding using the exact same embedding model that was used to process the documents.3 This ensures that the query and the documents exist in the same semantic vector space, making comparison possible.
  • Similarity Search: The retriever then executes a similarity search within the vector database. It calculates the “distance” between the query vector and all the chunk vectors in the index, identifying the top-K chunks that are semantically closest to the query.3 Techniques like Approximate Nearest Neighbor (ANN) search are often used to make this process efficient even with billions of vectors.7
  • Ranking and Filtering: The retrieved chunks are ranked by their relevance score, and typically only a small number of the highest-ranked documents (e.g., the top 5 or 10) are passed to the next stage.21

Phase 2: The Augmentation

In this phase, the retrieved information is prepared for the LLM.

  • Contextual Prompt Engineering: The content of the top-ranked document chunks is synthesized with the user’s original query to create a new, “augmented” prompt.3 This technique, sometimes called “prompt stuffing,” provides the LLM with the necessary external context, instructing it to formulate an answer based on the provided facts.7

Phase 3: The Generator

This is the final stage where the LLM produces the answer.

  • Response Generation: The augmented prompt is sent to the generator, which is a powerful LLM such as GPT-4 or Llama2.20 The LLM uses its advanced language capabilities to synthesize a coherent, well-formed, and contextually relevant response that integrates the information from the retrieved chunks with its own internal knowledge.2

The RAG pipeline functions as a series of compounding decisions, where choices made in the initial stages have a disproportionate and non-linear impact on the final output quality. A common failure point in RAG systems is poor retrieval quality, where the system fetches irrelevant or incomplete context.3 The root cause of this failure often lies not with the sophisticated retrieval algorithm but with the seemingly mundane data preparation steps. For instance, if a critical piece of information is inadvertently split across two separate chunks during the initial processing, no retrieval algorithm can recover that complete semantic unit. This creates a cascade of failure: poor chunking leads to fragmented embeddings, which prevents a successful semantic match, resulting in poor retrieval, which ultimately causes the LLM to receive inadequate context and generate a hallucinated or irrelevant answer. This demonstrates that the overall quality of a RAG system is dictated not by its most advanced component (the LLM) but by its “weakest link,” which is frequently the data ingestion and chunking stage. Therefore, a strategic investment in optimizing document analysis and chunking strategies often yields a far greater return on investment in final answer quality than simply upgrading the generator model.19

Post-Processing and Verification

In many production-grade RAG systems, an optional but highly valuable final step is post-processing.21 This can involve fact-checking the generated response against the source documents, summarizing long answers for brevity, or formatting the output for better readability. Crucially, this stage often includes adding citations or references that link the generated statements back to the specific source documents from which the information was retrieved. This feature is fundamental to building user trust, as it provides transparency and allows users to verify the information for themselves.7

The Evolution of RAG Paradigms

The field of Retrieval-Augmented Generation has evolved rapidly, moving from simple, linear pipelines to highly sophisticated, modular, and adaptive architectures. This progression reflects a growing ambition to not only provide LLMs with knowledge but also to imbue them with more effective strategies for finding and using that knowledge. This evolution can be broadly categorized into three paradigms: Naive, Advanced, and Modular RAG.3

Naive RAG

Naive RAG represents the foundational architecture, often described as a “retrieve-then-read” or “index-retrieve-generate” process.3 This is the classic workflow detailed in the previous section, which gained widespread popularity with the advent of powerful generative models like ChatGPT.29 While effective, this straightforward approach is beset by several limitations that spurred the development of more advanced techniques:

  • Retrieval Challenges: The simple retrieval mechanism often struggles with precision and recall. It can retrieve chunks that are only tangentially related to the query’s intent or, conversely, miss crucial pieces of information that use different terminology (the “vocabulary mismatch” problem).3
  • Generation Difficulties: The quality of the final response is highly dependent on the quality of the retrieved context. If the context is noisy, irrelevant, or contradictory, the generator is prone to hallucination or producing irrelevant and biased outputs.3
  • Augmentation Hurdles: There is often a challenge in seamlessly integrating the retrieved text snippets with the LLM’s own generative flow, which can result in responses that feel disjointed, repetitive, or stylistically inconsistent.3

Advanced RAG

The Advanced RAG paradigm introduces crucial optimization steps both before and after the core retrieval phase, aiming to enhance the quality and relevance of the context provided to the LLM.4 These enhancements primarily focus on two areas:

  • Pre-retrieval Optimization: These strategies focus on refining the input to the retriever. A key technique is query transformation or query rewriting. Here, the initial user query is analyzed and modified to be more specific, to fix spelling errors, or to align better with the language and structure of the knowledge base, thereby improving the chances of a successful retrieval.4
  • Post-retrieval Optimization: These strategies focus on refining the output of the retriever. The most significant technique is re-ranking. In this step, the initial list of top-K documents from the retriever is passed to a second, more powerful model (often a cross-encoder). This re-ranker performs a more fine-grained evaluation of the semantic relevance between the query and each document, re-ordering the list to push the most relevant documents to the top. This acts as a critical filter, reducing noise and ensuring the generator receives the highest-quality context possible.2

Modular RAG

Modular RAG marks a significant architectural shift away from a rigid, linear pipeline towards a more flexible and powerful framework composed of interconnected, specialized modules.4 This approach allows for greater adaptability and the integration of more complex functionalities. A modular RAG system can include various interchangeable or additional components, such as:

  • A search module that can employ multiple retrieval strategies (e.g., vector search, keyword search, graph-based search) and query different sources.4
  • A memory module that retains the history of a conversation, enabling the system to handle multi-turn dialogues and follow-up questions effectively.32
  • A reasoning module capable of performing multi-step retrieval. This mimics a human research process, where the findings from an initial retrieval are used to formulate a new, more specific query for a subsequent retrieval step, allowing the system to tackle complex questions that require synthesizing information from multiple sources.32

This modularity not only enhances the system’s capabilities but also allows for the seamless integration of complementary AI technologies, such as fine-tuning specific components or using reinforcement learning to optimize the retrieval strategy over time.4

The evolutionary path from Naive to Advanced and finally to Modular RAG is more than just an increase in architectural complexity; it mirrors a progression in cognitive capability. Naive RAG is analogous to a student answering a question by looking up a single fact in an encyclopediaโ€”a simple, one-step recall process.3 Advanced RAG is like a more diligent student who first pauses to consider the best way to phrase their search query (query rewriting) and then, after gathering several sources, quickly skims them to identify the most promising one before reading in-depth (re-ranking).4 The process is still linear but incorporates steps for quality control. Modular RAG represents a significant cognitive leap, akin to a researcher tackling a complex problem. They might perform an initial broad search, use those findings to conduct a more targeted follow-up search (multi-step retrieval), consult different types of sources (modular search), and remember what they have already learned (memory).32 This trajectory demonstrates a clear shift from a simple tool that

fetches information to a more sophisticated system that strategizes about how to find, evaluate, and synthesize it, laying the conceptual foundation for the highly autonomous Agentic RAG systems.

Strategic Implementation: RAG vs. Fine-Tuning

When seeking to adapt a general-purpose LLM for a specific business need, organizations face a critical strategic choice between two primary customization techniques: Retrieval-Augmented Generation (RAG) and fine-tuning. While both aim to enhance model performance and deliver domain-specific responses, they operate through fundamentally different mechanisms and present distinct trade-offs in terms of cost, complexity, data privacy, and knowledge management.33 Understanding these differences is essential for making an informed architectural decision.

A Comparative Framework

The choice between RAG and fine-tuning can be understood through a simple analogy: RAG is like giving a generalist cook a new, specialized recipe book to use for a specific meal, while fine-tuning is like sending that cook to an intensive culinary course to become a specialist in a particular cuisine.33

  • Core Mechanism: RAG augments an LLM’s knowledge externally at inference time. It provides relevant information as context within the prompt, but it does not alter the LLM’s underlying parameters.33 In contrast, fine-tuning directly modifies the LLM’s internal knowledge by continuing the training process on a curated, domain-specific dataset. This process adjusts the model’s internal weights, effectively teaching it a new skill or dialect.34
  • Knowledge Incorporation: RAG is exceptionally well-suited for incorporating dynamic, volatile, or rapidly changing information. To update the system’s knowledge, one only needs to update the external documents in the knowledge baseโ€”a relatively simple and fast process.9 Fine-tuning is better for teaching the model implicit knowledge, such as a specific style, tone, or the nuanced vocabulary of a specialized field like medicine or law. This knowledge becomes embedded in the model but is static once training is complete.34
  • Data Privacy and Security: RAG generally offers a more secure posture for handling sensitive data. Proprietary information can be kept in a secure, on-premises database and is only accessed at runtime for a specific query. The data is used as context but is not absorbed into the model’s parameters.1 Fine-tuning, however, requires exposing the model to this proprietary data during the training phase, which can pose a security or privacy risk depending on the data’s sensitivity and the deployment environment.1
  • Cost, Time, and Resources: RAG has a lower barrier to entry, requiring primarily coding and data infrastructure skills, making the initial implementation less complex and costly.17 However, it introduces additional computational overhead and latency for every query processed at runtime.34 Fine-tuning is a resource-intensive endeavor, demanding significant upfront investment in compute infrastructure (GPU clusters), time, and specialized AI/ML expertise in areas like deep learning and NLP.33 Once a model is fine-tuned, however, its runtime performance is efficient and requires no additional overhead per query.34
  • Hallucination and Verifiability: RAG is a powerful tool for mitigating hallucinations because it grounds the LLM’s responses in retrieved factual evidence. Crucially, it enables the system to cite its sources, making outputs transparent and verifiable by the end-user.7 Fine-tuning can reduce hallucinations on topics within its specialized domain but is still susceptible to making errors on unfamiliar queries and does not have an inherent mechanism for providing source citations.35
CriterionRetrieval-Augmented Generation (RAG)Fine-Tuning
Primary GoalTo provide the LLM with up-to-date, factual, or proprietary knowledge at the time of response generation.To adapt the LLM’s core behavior, style, tone, or understanding of a specialized domain’s language.
Knowledge MechanismExternal and non-parametric. Knowledge is retrieved from an external database and supplied in the prompt at runtime. The model’s weights are not changed.34Internal and parametric. Knowledge is integrated into the model’s weights through continued training on a domain-specific dataset.35
Data FreshnessExcellent for dynamic data. Knowledge can be updated in real-time by simply modifying the external data source.14Static. The model’s knowledge is fixed at the time of training. Incorporating new information requires retraining.35
Cost ProfileLower upfront cost and complexity. Higher runtime cost due to the added retrieval step for each query.34High upfront cost for data curation, compute resources (GPUs), and specialized skills. Efficient runtime with no extra overhead.34
Data PrivacyHigh. Sensitive data can remain in a secure, isolated database and is not absorbed into the model.1Lower. Requires exposing the model to proprietary data during the training process, which may be a security concern.1
VerifiabilityHigh. Enables citation of sources, allowing users to verify the factual basis of the generated response.14Low. Does not inherently provide a mechanism to trace generated information back to a specific source document.
Key WeaknessAdds latency to each query. The quality of the response is highly dependent on the quality of the retrieval.28Can be prone to “catastrophic forgetting” of general knowledge. Requires significant technical expertise and resources to implement.33
Required SkillsData engineering, data architecture, and coding skills are primary.34Deep learning, NLP, model configuration, and MLOps expertise are required, in addition to data skills.34

Hybrid Architectures: The Best of Both Worlds

It is crucial to recognize that RAG and fine-tuning are not mutually exclusive; in fact, they can be powerfully complementary.4 A hybrid architecture represents a state-of-the-art approach to LLM customization. In this model, an LLM is first

fine-tuned to master the specific vocabulary, tone, and implicit reasoning patterns of a domain. This specialized model is then deployed within a RAG framework, which provides it with real-time, factual information from an external knowledge base. This approach combines the “how” (the specialized style and understanding from fine-tuning) with the “what” (the up-to-date facts from RAG), resulting in responses that are not only factually accurate and current but also stylistically appropriate and contextually nuanced.34

The Frontier of RAG: Advanced Techniques and Architectures

As the adoption of RAG has grown, so has the research into overcoming its limitations. The frontier of RAG is characterized by a move away from simple, linear pipelines toward more dynamic, reflective, and intelligent systems. These advanced techniques aim to improve every stage of the RAG process, from how queries are understood to how information is retrieved, evaluated, and synthesized.

Enhancing the Retrieval and Ranking Phases

The quality of retrieval is a primary determinant of RAG’s success. Advanced techniques focus on ensuring the context provided to the generator is as precise and relevant as possible.

  • Hybrid Search: This technique addresses the shortcomings of using a single retrieval method by combining the strengths of multiple approaches. It typically fuses traditional keyword-based search (sparse retrieval, e.g., BM25), which excels at matching specific terms and entities, with modern semantic vector search (dense retrieval), which excels at understanding conceptual meaning and user intent. This combination leads to more robust and comprehensive retrieval results that capture both lexical and semantic relevance.9
  • Re-ranking Models: Re-ranking introduces a second, more meticulous evaluation stage after the initial retrieval. While the first-pass retriever is optimized for speed and recall (finding a broad set of potentially relevant documents), the re-ranker is optimized for precision. A more powerful but computationally intensive model, such as a BERT-based cross-encoder, takes the top candidates from the retriever and performs a deep, pairwise comparison with the query. It then re-orders these candidates, pushing the most semantically relevant documents to the top. This is a critical step for filtering out noise and maximizing the quality of the context sent to the generator, trading a small increase in latency for a significant boost in final accuracy.2

Iterative and Reflective Architectures

A major innovation in RAG is the introduction of self-reflection and iteration, allowing the system to assess and correct its own processes.

  • Self-RAG (Self-Reflective RAG): This framework endows a single LLM with the ability to control its own retrieval and generation process through self-reflection. It uses special “reflection tokens” to make several key decisions on-demand: (1) whether retrieval is necessary at all for a given query, (2) assessing the relevance of any retrieved passages, and (3) critiquing its own generated output to check if it is factually supported by the provided evidence.29 This adaptive approach makes the model’s reasoning more transparent and allows its behavior to be tailored to specific task requirements.40
  • Corrective RAG (CRAG): This technique is designed to improve RAG’s robustness, particularly when the initial retrieval yields poor results. CRAG introduces a lightweight “retrieval evaluator” that grades the quality of the retrieved documents against the query. If the documents are deemed irrelevant or incorrect, CRAG triggers a corrective action. This could involve discarding the faulty documents and initiating a web search to find more reliable information, or decomposing and refining documents that are correct but contain irrelevant noise.29 This prevents the generator from being misled by poor context.
  • Adaptive RAG: This framework introduces a layer of intelligence that dynamically selects the most efficient retrieval strategy based on the query’s complexity. A classifier model first analyzes the user’s question and routes it down an appropriate path: simple queries may be answered directly by the LLM with no retrieval; moderately complex queries may trigger a standard, single-step retrieval; and highly complex queries may activate an iterative, multi-step retrieval process.45 This balanced approach conserves computational resources for simple tasks while dedicating more powerful methods to challenging ones.47

Structural and Agentic Innovations

The most advanced RAG architectures rethink the structure of the knowledge base and the nature of the system itself, moving towards autonomous agents.

  • Long-Context RAG (e.g., Long RAG, RAPTOR): These techniques tackle the challenge of processing very long documents, where standard chunking can lose critical context. Long RAG is designed to work with larger retrieval units, such as entire document sections.42 RAPTOR (Recursive Abstractive Processing for Tree-Organized Retrieval) creates a hierarchical tree of summaries for a document, allowing retrieval to occur at multiple levels of abstraction, from fine-grained details to high-level concepts.48
  • GraphRAG: This approach leverages structured knowledge graphs as the external data source. Instead of retrieving unstructured text chunks, GraphRAG retrieves nodes and their relationships (subgraphs). This structure is ideal for answering complex questions that require multi-hop reasoningโ€”connecting disparate pieces of information through their explicit relationshipsโ€”a task that is notoriously difficult with unstructured text alone.7
  • Agentic RAG: This represents the current apex of RAG evolution, where the RAG pipeline is integrated as a tool to be used by autonomous AI agents. These agents can orchestrate complex, multi-step tasks by leveraging RAG within a broader reasoning framework. Key patterns of Agentic RAG include 52:
  • Planning: Decomposing a complex user request into a logical sequence of sub-tasks.
  • Tool Use: Interacting with various external tools, including the RAG retriever, APIs, or code interpreters, to gather information and perform actions.
  • Reflection: Evaluating the results of their actions and the quality of their generated outputs to self-correct and refine their approach.
  • Multi-Agent Collaboration: Multiple specialized agents working together, each potentially equipped with its own RAG system, to solve a complex problem.
TechniqueCore IdeaProblem SolvedKey Limitation(s)
Self-RAGThe LLM learns to control its own retrieval and critique its own output using special “reflection tokens”.40Reduces unnecessary retrieval for simple queries and improves factual grounding by forcing self-assessment.42Requires specialized training of the LLM to generate and understand reflection tokens; adds complexity to the training pipeline.53
Corrective RAG (CRAG)A retrieval evaluator grades retrieved documents and triggers corrective actions (e.g., web search) if they are irrelevant.43Improves robustness when initial retrieval is poor, preventing the generator from being misled by bad context.43Adds latency due to the evaluation and potential web search steps; effectiveness depends on the quality of the evaluator model.44
Adaptive RAGA classifier dynamically routes queries to different processing paths (no retrieval, single-step, multi-step) based on complexity.46Balances performance and cost by applying computationally expensive methods only when necessary for complex queries.45The system’s performance is dependent on the accuracy of the initial query classifier; misclassification can lead to suboptimal processing.46
Agentic RAGAutonomous agents use RAG as one of many tools in a planned, multi-step reasoning process involving reflection and collaboration.52Handles highly complex, dynamic tasks that require more than just question-answering, such as workflow automation or research analysis.31Significantly increases system complexity, orchestration challenges, and potential for cascading errors between agent steps.52
GraphRAGRetrieves information from a structured knowledge graph instead of unstructured text, leveraging entity relationships.50Excels at multi-hop reasoning and answering questions about relationships between entities that are hard to infer from plain text.7Requires a high-quality, well-maintained knowledge graph, which can be expensive and complex to create and update.50
Long RAG / RAPTORProcesses documents in larger, more coherent chunks or creates hierarchical summary trees to preserve context.42Mitigates context fragmentation and information loss that occurs with small, fixed-size chunking of long documents.42Can increase the amount of context fed to the LLM, potentially hitting context window limits or introducing more noise if not managed well.

RAG in Practice: Applications and Industry Impact

The theoretical advancements in RAG have translated into tangible, high-impact applications across a wide array of industries. RAG is proving to be a “last-mile” technology, bridging the gap between the powerful reasoning capabilities of LLMs and the vast repositories of proprietary, unstructured data that organizations have accumulated for decades. By activating this dormant institutional knowledge, RAG provides an immediate and compelling return on investment.

Enterprise Knowledge Management & Internal Tools

One of the most immediate and widespread applications of RAG is in revolutionizing internal knowledge management. Enterprises often possess vast, siloed repositories of information in the form of technical documentation, company policies, HR guidelines, and historical project data.5 RAG-powered chatbots and search engines can act as intelligent assistants, allowing employees to ask natural language questions and receive precise, context-aware answers drawn directly from these internal sources.32

  • Example: Bell Canada has deployed a modular RAG system to enhance its internal knowledge management processes, ensuring employees have access to the most up-to-date company information.55
  • Example: LinkedIn developed a novel system combining RAG with a knowledge graph to power its internal customer service helpdesk, successfully reducing the median time to resolve issues by over 28%.55
  • Example: Project management tool Asana leverages RAG to provide users with intelligent insights based on their project data.56

Customer Service and Support

RAG is transforming customer service by enabling the creation of highly capable automated support agents. These virtual assistants can provide accurate, personalized, and up-to-the-minute responses by retrieving information from product manuals, troubleshooting guides, FAQs, and customer interaction histories.1 This not only improves customer satisfaction by providing instant answers but also frees up human agents to handle more complex issues.

  • Example: DoorDash built a sophisticated RAG-based chatbot for its delivery contractors (“Dashers”). The system includes a “guardrail” component to monitor and ensure the accuracy and policy-compliance of every generated response.55

Specialized Professional Domains

In fields where accuracy and access to specific, dense information are paramount, RAG serves as a powerful co-pilot for professionals.

  • Legal: RAG systems are used to accelerate legal research by rapidly sifting through immense volumes of case law, statutes, and legal precedents to find relevant information for drafting documents or analyzing cases.10 LexisNexis is one company applying RAG for advanced legal analysis.56
  • Finance: Financial analysts use RAG to synthesize real-time market data, breaking news, and company reports to generate timely insights, forecasts, and investment recommendations.56 The Bloomberg Terminal is a prominent example of a financial tool that uses RAG to deliver market insights.56
  • Healthcare: RAG assists clinicians in making more informed decisions by retrieving information from the latest medical research, patient health records, and established clinical guidelines to suggest diagnoses or formulate personalized treatment plans.6 IBM Watson Health utilizes RAG for this purpose.56

Content and Code Generation

RAG enhances both creative and technical generation tasks by grounding them in factual, relevant data. This applies to marketing content creation, SEO optimization, drafting tailored emails, and summarizing meetings.25

  • Example: Content creation platform Jasper uses RAG to ensure its generated articles are accurate and contextually aware.56
  • Example: Grammarly employs RAG to analyze the context of an email exchange and suggest appropriate adjustments to tone and style.56
  • Example: In software development, RAG-powered tools assist programmers by retrieving code snippets and usage examples from the most recent versions of libraries and APIs, improving developer productivity and reducing errors.56

Challenges, Risks, and Mitigation Strategies

Despite its transformative potential, implementing a robust and reliable RAG system is a complex engineering endeavor fraught with challenges. A critical understanding of these potential failure points, security risks, and the nuances of evaluation is essential for successful deployment.

Retrieval Quality and Context Limitations

The core of RAG’s effectiveness lies in its retriever, making retrieval quality the system’s most critical vulnerability. The principle of “garbage in, garbage out” applies with particular force; if the retriever provides poor context, the generator will produce a poor response.

  • The “Needle in a Haystack” Problem: This encompasses several related failure modes.28 The system might fail due to
    missing content, where the answer is not present in the knowledge base, yet the LLM hallucinates a response instead of stating its ignorance.58 It can also fail due to
    low precision or recall, where the retriever fetches irrelevant or incomplete documents, or due to suboptimal ranking, where the correct document is found but not ranked highly enough to be included in the final context.3
  • Context Length Limitations: LLMs operate with a fixed-size context window. If the retrieval process returns too many documents, or if the relevant documents are exceedingly long, critical information can be truncated and lost during the augmentation phase. This can starve the generator of the very details it needs to form a complete and accurate answer.28

System Performance and Complexity

Introducing a retrieval loop necessarily adds layers of complexity and potential performance bottlenecks.

  • Latency: Each query in a RAG system requires at least one round-trip to a database, followed by the LLM’s generation time. Advanced techniques like re-ranking or multi-step retrieval add further steps, increasing the overall response time (latency). This can be a significant issue for real-time, interactive applications.13
  • Computational Cost and Complexity: Building, deploying, and maintaining the full RAG stackโ€”including data ingestion pipelines, vector databases, and continuous update processesโ€”is a non-trivial engineering task that can be computationally expensive and resource-intensive, especially as the knowledge base scales.13

Security and Trustworthiness

By connecting an LLM to an external data source, RAG introduces a new attack surface and new considerations for data governance.

  • Adversarial Attacks and Data Poisoning: The external knowledge base can be targeted by malicious actors. Research has demonstrated attacks like POISONCRAFT, where an attacker injects fraudulent information into the data source. This can “poison” the system, causing the RAG model to retrieve and cite misleading information or fraudulent websites, thereby compromising its integrity.61
  • Data Reliability and Bias: The RAG system is fundamentally dependent on the quality of its knowledge source. If the source data is unreliable, biased, or outdated, the generated outputs will inherit these flaws.59 A significant challenge is also how to handle contradictory information when documents retrieved from multiple sources disagree.58
  • Privacy and Security: When the knowledge base contains sensitive or personally identifiable information (PII), implementing robust security measures is paramount. This includes strict access controls, data anonymization techniques, and encryption to prevent unauthorized data exposure.59

Evaluation and Monitoring

Evaluating the performance of a RAG system is notoriously difficult due to its hybrid nature, the interplay between its components, and the dynamic state of its knowledge base.2 A comprehensive evaluation framework is necessary to measure and improve system quality, yet the field currently lacks a unified, standard paradigm.2 Effective evaluation requires assessing the retrieval and generation components both independently and holistically.

ComponentMetricDefinitionQuestion it Answers
RetrievalContext PrecisionThe proportion of retrieved documents that are relevant to the query.“Are the retrieved documents actually useful for answering the question?” 2
Context RecallThe proportion of all relevant documents in the knowledge base that were successfully retrieved.“Did the retriever find all the necessary information to answer the question completely?” 2
GenerationFaithfulnessThe degree to which the generated answer is factually consistent with the information presented in the retrieved context.“Is the model making things up, or is it sticking to the provided facts?” 2
Answer RelevancyThe degree to which the generated answer directly addresses the user’s original query and intent.“Did the model actually answer the user’s question?” 2
Answer CorrectnessThe factual accuracy of the generated answer when compared against a ground truth or sample response.“Is the information in the final answer correct?” 2

Conclusion and Future Trajectory

Synthesis of Findings

Retrieval-Augmented Generation has fundamentally altered the trajectory of applied artificial intelligence. It addresses the most critical vulnerabilities of Large Language Modelsโ€”their static knowledge and tendency to hallucinateโ€”by grounding them in external, verifiable facts. RAG transforms LLMs from being solely creative text generators into powerful, enterprise-ready reasoning engines capable of delivering accurate, timely, and trustworthy responses. Its core value proposition lies in its ability to enhance factual accuracy, provide auditable verifiability through citations, ensure informational currency, and enable robust data governance. By mitigating the primary risks associated with deploying LLMs in high-stakes environments, RAG has become an indispensable component of the modern AI technology stack.

Future Research Directions

The evolution of RAG is far from over. The future trajectory of the technology points toward greater capability, robustness, and integration. Key areas of ongoing research and development include:

  • Modality Extension: The principles of RAG are being extended beyond text to encompass multimodal data. Future systems will be able to retrieve and synthesize information from a combination of text, images, audio, and video, enabling a more holistic understanding of complex queries.4
  • Enhanced Reasoning: There is a strong push to develop more sophisticated multi-hop and multi-step reasoning capabilities. This will allow RAG systems to tackle increasingly complex questions that require synthesizing evidence across numerous documents and logical steps, moving closer to human-like research and analysis.4
  • Improving Robustness and Trustworthiness: As RAG systems become more critical, research into fortifying them against adversarial attacks like data poisoning, mitigating inherent biases from data sources, and developing more comprehensive and standardized evaluation frameworks will be crucial for ensuring their reliability and safety.4
  • The RAG Technical Stack and Ecosystem: The maturation of the field is leading to the development of a robust ecosystem of tools, platforms, and services. Frameworks like LangChain and LlamaIndex, along with “RAG-as-a-Service” offerings from major cloud providers, are simplifying the development process and accelerating the adoption of RAG across industries.4

Ultimately, the future of RAG appears to be a convergence with the broader field of Agentic AI. The clear evolutionary trend from Naive to Advanced and Modular RAG demonstrates a consistent move towards greater autonomy and flexibility.3 Advanced techniques like Self-RAG and Adaptive RAG introduce decision-making capabilities

within the RAG pipeline itselfโ€”the system learns to ask, “Should I retrieve information now?” or “Is this retrieved document good enough?”.40 Agentic RAG takes this a logical step further by externalizing this decision-making process. In an agentic architecture, RAG ceases to be the entire application; instead, it becomes a specialized “tool” that an autonomous agent can choose to use, ignore, or configure on the fly as part of a larger, more complex plan.31 This suggests a paradigm shift where the focus of innovation will move from optimizing the internal workings of the RAG pipeline to optimizing an agent’s ability to reason about when and how to deploy that pipeline to achieve a goal. The trajectory is toward the commodification and abstraction of RAG, positioning it as a fundamental, callable service in the toolkit of next-generation intelligent agents.

Works cited

  1. 5 key features and benefits of retrieval augmented generation (RAG) | The Microsoft Cloud Blog, accessed on June 22, 2025, https://www.microsoft.com/en-us/microsoft-cloud/blog/2025/02/13/5-key-features-and-benefits-of-retrieval-augmented-generation-rag/
  2. Retrieval Augmented Generation Evaluation in the Era of Large Language Models: A Comprehensive Survey – arXiv, accessed on June 22, 2025, https://arxiv.org/html/2504.14891v1
  3. Retrieval-Augmented Generation for Large Language … – arXiv, accessed on June 22, 2025, https://arxiv.org/pdf/2312.10997
  4. Retrieval-Augmented Generation for Large Language Models: A Survey – arXiv, accessed on June 22, 2025, https://arxiv.org/html/2312.10997v2
  5. RAG for LLMs: Smarter AI with retrieval-augmented generation – Glean, accessed on June 22, 2025, https://www.glean.com/blog/rag-for-llms
  6. The Science Behind RAG: How It Reduces AI Hallucinations – Zero Gravity Marketing, accessed on June 22, 2025, https://zerogravitymarketing.com/blog/the-science-behind-rag/
  7. Retrieval-augmented generation – Wikipedia, accessed on June 22, 2025, https://en.wikipedia.org/wiki/Retrieval-augmented_generation
  8. Retrieval-Augmented Generation (RAG) – Pinecone, accessed on June 22, 2025, https://www.pinecone.io/learn/retrieval-augmented-generation/
  9. What is Retrieval-Augmented Generation (RAG)? – Google Cloud, accessed on June 22, 2025, https://cloud.google.com/use-cases/retrieval-augmented-generation
  10. RAG Cheatsheet – Eliminating Hallucinations in LLMs – The Cloud Girl, accessed on June 22, 2025, https://www.thecloudgirl.dev/blog/rag-eliminating-hallucinations-in-llms
  11. What is RAG (Retrieval Augmented Generation)? – IBM, accessed on June 22, 2025, https://www.ibm.com/think/topics/retrieval-augmented-generation
  12. Understanding RAG: Retrieval Augmented Generation Essentials for AI Projects – Apideck, accessed on June 22, 2025, https://www.apideck.com/blog/understanding-rag-retrieval-augmented-generation-essentials-for-ai-projects
  13. What Is RAG? Use Cases, Limitations, and Challenges – Bright Data, accessed on June 22, 2025, https://brightdata.com/blog/web-data/rag-explained
  14. How Retrieval-Augmented Generation Drives Enterprise AI Success, accessed on June 22, 2025, https://www.coveo.com/blog/retrieval-augmented-generation-benefits/
  15. 5 benefits of retrieval-augmented generation (RAG) – Merge.dev, accessed on June 22, 2025, https://www.merge.dev/blog/rag-benefits
  16. cloud.google.com, accessed on June 22, 2025, https://cloud.google.com/use-cases/retrieval-augmented-generation#:~:text=RAG-,What%20is%20Retrieval%2DAugmented%20Generation%20(RAG)%3F,large%20language%20models%20(LLMs).
  17. What is RAG? – Retrieval-Augmented Generation AI Explained – AWS, accessed on June 22, 2025, https://aws.amazon.com/what-is/retrieval-augmented-generation/
  18. How to Create a RAG System: A Complete Guide to Retrieval-Augmented Generation, accessed on June 22, 2025, https://www.mindee.com/blog/build-rag-system-guide
  19. Design and Develop a RAG Solution – Azure Architecture Center | Microsoft Learn, accessed on June 22, 2025, https://learn.microsoft.com/en-us/azure/architecture/ai-ml/guide/rag/rag-solution-design-and-evaluation-guide
  20. What is RAG: Understanding Retrieval-Augmented Generation …, accessed on June 22, 2025, https://qdrant.tech/articles/what-is-rag-in-ai/
  21. Retrieval Augmented Generation (RAG): A Complete Guide – WEKA, accessed on June 22, 2025, https://www.weka.io/learn/guide/ai-ml/retrieval-augmented-generation/
  22. Advanced RAG Techniques – Cazton, accessed on June 22, 2025, https://www.cazton.com/blogs/technical/advanced-rag-techniques
  23. Introduction to Retrieval Augmented Generation (RAG) – Redis, accessed on June 22, 2025, https://redis.io/glossary/retrieval-augmented-generation/
  24. [2505.08445] Optimizing Retrieval-Augmented Generation: Analysis of Hyperparameter Impact on Performance and Efficiency – arXiv, accessed on June 22, 2025, https://arxiv.org/abs/2505.08445
  25. Understanding RAG: 6 Steps of Retrieval Augmented Generation (RAG) – Acorn Labs, accessed on June 22, 2025, https://www.acorn.io/resources/learning-center/retrieval-augmented-generation/
  26. Active Retrieval-Augmented Generation โ€“ For Quicker, Better Responses – K2view, accessed on June 22, 2025, https://www.k2view.com/blog/active-retrieval-augmented-generation/
  27. Introduction to Retrieval Augmented Generation (RAG) – Weaviate, accessed on June 22, 2025, https://weaviate.io/blog/introduction-to-rag
  28. RAG (Retrieval-Augmented Generation): How It Works, Its Limitations, and Strategies for Accurate Results – Cloudkitect, accessed on June 22, 2025, https://cloudkitect.com/how-rag-works-limitations-and-strategies-for-accuracy/
  29. URAG: Implementing a Unified Hybrid RAG for Precise Answers in University Admission Chatbots โ€“ A Case Study at HCMUT – arXiv, accessed on June 22, 2025, https://arxiv.org/html/2501.16276v1
  30. Toolshed: Scale Tool-Equipped Agents with Advanced RAG-Tool Fusion and Tool Knowledge Bases – arXiv, accessed on June 22, 2025, https://arxiv.org/pdf/2410.14594
  31. Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG – arXiv, accessed on June 22, 2025, https://arxiv.org/html/2501.09136v1
  32. RAG Architecture Explained: A Comprehensive Guide [2025] | Generative AI Collaboration Platform, accessed on June 22, 2025, https://orq.ai/blog/rag-architecture
  33. RAG vs. Fine-tuning – IBM, accessed on June 22, 2025, https://www.ibm.com/think/topics/rag-vs-fine-tuning
  34. RAG vs. Fine-Tuning: How to Choose – Oracle, accessed on June 22, 2025, https://www.oracle.com/artificial-intelligence/generative-ai/retrieval-augmented-generation-rag/rag-fine-tuning/
  35. Retrieval-Augmented Generation vs Fine-Tuning: What’s Right for You? – K2view, accessed on June 22, 2025, https://www.k2view.com/blog/retrieval-augmented-generation-vs-fine-tuning/
  36. RAG vs. fine-tuning: Choosing the right method for your LLM | SuperAnnotate, accessed on June 22, 2025, https://www.superannotate.com/blog/rag-vs-fine-tuning
  37. Fine-Tuning vs RAG: Key Differences Explained (2025 Guide) – Orq.ai, accessed on June 22, 2025, https://orq.ai/blog/finetuning-vs-rag
  38. Advanced RAG Techniques | DataCamp, accessed on June 22, 2025, https://www.datacamp.com/blog/rag-advanced
  39. Re-ranking in Retrieval Augmented Generation: How to Use Re-rankers in RAG – Chitika, accessed on June 22, 2025, https://www.chitika.com/re-ranking-in-retrieval-augmented-generation-how-to-use-re-rankers-in-rag/
  40. Self-Rag: Self-reflective Retrieval augmented Generation – arXiv, accessed on June 22, 2025, https://arxiv.org/html/2310.11511
  41. Self-RAG: Learning to Retrieve, Generate and Critique through Self-Reflection, accessed on June 22, 2025, https://selfrag.github.io/
  42. The 2025 Guide to Retrieval-Augmented Generation (RAG) – Eden AI, accessed on June 22, 2025, https://www.edenai.co/post/the-2025-guide-to-retrieval-augmented-generation-rag
  43. Corrective RAG – Learn Prompting, accessed on June 22, 2025, https://learnprompting.org/docs/retrieval_augmented_generation/corrective-rag
  44. Implementing Corrective RAG in the Easiest Way – LanceDB Blog, accessed on June 22, 2025, https://blog.lancedb.com/implementing-corrective-rag-in-the-easiest-way-2/
  45. Guide to Adaptive RAG Systems with LangGraph – Analytics Vidhya, accessed on June 22, 2025, https://www.analyticsvidhya.com/blog/2025/03/adaptive-rag-systems-with-langgraph/
  46. [2403.14403] Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity – arXiv, accessed on June 22, 2025, https://arxiv.org/abs/2403.14403
  47. 8 Retrieval Augmented Generation (RAG) Architectures You Should Know in 2025, accessed on June 22, 2025, https://humanloop.com/blog/rag-architectures
  48. Adaptive-RAG: Enhancing Large Language Models by Question-Answering Systems with Dynamic Strategy Selection for Query Complexity : r/machinelearningnews – Reddit, accessed on June 22, 2025, https://www.reddit.com/r/machinelearningnews/comments/1bs2i80/adaptiverag_enhancing_large_language_models_by/
  49. Retrieval-Augmented Generation (RAG): Deep Dive into 25 Different Types of RAG, accessed on June 22, 2025, https://www.marktechpost.com/2024/11/25/retrieval-augmented-generation-rag-deep-dive-into-25-different-types-of-rag/
  50. Advanced RAG techniques – Literal.ai, accessed on June 22, 2025, https://www.literalai.com/blog/advanced-rag-techniques
  51. A Comprehensive Guide to RAG Implementations – Groove Innovations, accessed on June 22, 2025, https://www.grooveinnovations.ai/post/a-comprehensive-guide-to-rag-implementations
  52. asinghcsu/AgenticRAG-Survey: Agentic-RAG explores … – GitHub, accessed on June 22, 2025, https://github.com/asinghcsu/AgenticRAG-Survey
  53. [2310.11511] Self-Rag: Self-reflective Retrieval augmented Generation – ar5iv – arXiv, accessed on June 22, 2025, https://ar5iv.labs.arxiv.org/html/2310.11511
  54. 10 Real-World Examples of Retrieval Augmented Generation – Signity Solutions, accessed on June 22, 2025, https://www.signitysolutions.com/blog/real-world-examples-of-retrieval-augmented-generation
  55. 10 RAG examples and use cases from real companies – Evidently AI, accessed on June 22, 2025, https://www.evidentlyai.com/blog/rag-examples
  56. Top 14 RAG Use Cases You Need to Know in … – Moon Technolabs, accessed on June 22, 2025, https://www.moontechnolabs.com/blog/rag-use-cases/
  57. 7 Practical Applications of RAG Models and Their Impact on Society – Hyperight, accessed on June 22, 2025, https://hyperight.com/7-practical-applications-of-rag-models-and-their-impact-on-society/
  58. Top Problems with RAG systems and ways to mitigate them – AIMon Labs, accessed on June 22, 2025, https://www.aimon.ai/posts/top_problems_with_rag_systems_and_ways_to_mitigate_them
  59. 5 challenges of using retrieval-augmented generation (RAG), accessed on June 22, 2025, https://www.merge.dev/blog/rag-challenges
  60. 12 RAG Pain Points and their Solutions – Analytics Vidhya, accessed on June 22, 2025, https://www.analyticsvidhya.com/blog/2024/06/rag-pain-points-and-their-solutions/
  61. [2505.06579] POISONCRAFT: Practical Poisoning of Retrieval-Augmented Generation for Large Language Models – arXiv, accessed on June 22, 2025, https://arxiv.org/abs/2505.06579
  62. [2502.06872] Towards Trustworthy Retrieval Augmented Generation for Large Language Models: A Survey – arXiv, accessed on June 22, 2025, https://arxiv.org/abs/2502.06872
  63. arXiv:2408.11381v2 [cs.CL] 9 Sep 2024, accessed on June 22, 2025, https://arxiv.org/pdf/2408.11381?
  64. Advanced RAG Techniques: Boost Accuracy & Efficiency – Chitika, accessed on June 22, 2025, https://www.chitika.com/advanced-rag-techniques-guide/
  65. A Study on the Implementation Method of an Agent-Based Advanced RAG System Using Graph – arXiv, accessed on June 22, 2025, https://arxiv.org/pdf/2407.19994?
  66. Retrieval Augmented Generation – IBM, accessed on June 22, 2025, https://www.ibm.com/architectures/patterns/genai-rag
  67. Retrieval Augmented Generation (RAG) for LLMs – Prompt Engineering Guide, accessed on June 22, 2025, https://www.promptingguide.ai/research/rag
  68. RAG 101: Demystifying Retrieval-Augmented Generation Pipelines | NVIDIA Technical Blog, accessed on June 22, 2025, https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/
  69. RAG Pipeline Diagram: How to Augment LLMs With Your Data – Multimodal, accessed on June 22, 2025, https://www.multimodal.dev/post/rag-pipeline-diagram
  70. RAG and generative AI – Azure AI Search | Microsoft Learn, accessed on June 22, 2025, https://learn.microsoft.com/en-us/azure/search/retrieval-augmented-generation-overview

What is RAG (retrieval augmented generation)?

Retrieval augmented generation (RAG) is an architecture for optimizing the performance of an artificial intelligence (AI) model by connecting it with external knowledge bases. RAG helps large language models (LLMs) deliver more relevant responses at a higher quality.

Generative AI (gen AI) models are trained on large datasets and refer to this information to generate outputs. However, training datasets are finite and limited to the information the AI developer can accessโ€”public domain works, internet articles, social media content and other publicly accessible data.

RAG allows generative AI models to access additional external knowledge bases, such as internal organizational data, scholarly journals and specialized datasets. By integrating relevant information into the generation process, chatbots and other natural language processing (NLP) tools can create more accurate domain-specific content without needing further training.

What is Retrieval-Augmented Generation (RAG)?

annotated diagram of a typical RAG (Retrievalโ€‘Augmented Generation) architecture:

The diagram emphasizes RAGโ€™s core process:

  1. Index โ†’ 2. Retrieve โ†’ 3. Augment โ†’ 4. Generate
    This creates a feedback loop allowing high-fidelity, up-to-date responses without need for retraining the LLMโ€”you simply update the index. It’s why RAG is preferred for knowledge-intensive and real-time applications like legal, medical, and enterprise Q&A
  • Step 1: Knowledge Ingestion
    Documents (e.g., PDFs, web pages, databases) are processed offline. They’re split into smaller chunks, embedded via an embedding model, and stored in a vector database (FAISS, Pinecone, etc.)
  • Step 2: Query Embedding and Retrieval
    At runtime, the userโ€™s query is transformed into an embedding. This query embedding is used to search the vector database (e.g., FAISS) to find the topโ€‘K most relevant document chunks
  • Step 3: Augmented Prompt Construction
    The retrieved chunks are combined with the user prompt to create a contextualized input for the LLM. The template might say: โ€œUsing the following context, answer the question…โ€
  • Step 4: Generative Model
    The augmented prompt is fed into a generative model (LLM). It processes both user query and retrieved content to produce a grounded, fluent answer. Optionally, it can cite the sources

What are the benefits of RAG?

RAG empowers organizations to avoid high retraining costs when adapting generative AI models to domain-specific use cases. Enterprises can use RAG to complete gaps in a machine learning modelโ€™s knowledge base so it can provide better answers.

The primary benefits of RAG include:

  • Cost-efficient AI implementation and AI scaling
  • Access to current domain-specific data
  • Lower risk of AI hallucinations
  • Increased user trust
  • Expanded use cases
  • Enhanced developer control and model maintenance
  • Greater data security

Cost-efficient AI implementation and AI scaling

When implementing AI, most organizations first select a foundation model: the deep-learning models that serve as the basis for the development of more advanced versions. Foundation models typically have generalized knowledge bases populated with publicly available training data, such as internet content available at the time of training.

Retraining a foundation model or fine-tuning itโ€”where a foundation model is further trained on new data in a smaller, domain-specific datasetโ€”is computationally expensive and resource-intensive. The model adjusts some or all of its parameters to adjust its performance to the new specialized data.

With RAG, enterprises can use internal, authoritative data sources and gain similar model performance increases without retraining. Enterprises can scale their implementation of AI applications as needed while mitigating cost and resource requirement increases.

Access to current and domain-specific data

Generative AI models have a knowledge cutoff, the point at which their training data was last updated. As a model ages further past its knowledge cutoff, it loses relevance over time. RAG systems connect models with supplemental external data in real-time and incorporate up-to-date information into generated responses.

Enterprises use RAG to equip models with specific information such as proprietary customer data, authoritative research and other relevant documents.

RAG models can also connect to the internet with application programming interfaces (APIs) and gain access to real-time social media feeds and consumer reviews for a better understanding of market sentiment. Meanwhile, access to breaking news and search engines can lead to more accurate responses as models incorporate the retrieved information into the text-generation process.

Lower risk of AI hallucinations

Generative AI models such as OpenAIโ€™s GPT work by detecting patterns in their data, then using those patterns to predict the most likely outcomes to user inputs. Sometimes models detect patterns that donโ€™t exist. A hallucination or confabulation happens when models present incorrect or made-up information as though it is factual.

RAG anchors LLMs in specific knowledge backed by factual, authoritative and current data. Compared to a generative model operating only on its training data, RAG models tend to provide more accurate answers within the contexts of their external data. While RAG can reduce the risk of hallucinations, it cannot make a model error-proof.

Increased user trust

Chatbots, a common generative AI implementation, answer questions posed by human users. For a chatbot such as ChatGPT to be successful, users need to view its output as trustworthy. RAG models can include citations to the knowledge sources in their external data as part of their responses.

When RAG models cite their sources, human users can verify those outputs to confirm accuracy while consulting the cited works for follow-up clarification and additional information. Corporate data storage is often a complex and siloed maze. RAG responses with citations point users directly toward the materials they need.

Expanded use cases

Access to more data means that one model can handle a wider range of prompts. Enterprises can optimize models and gain more value from them by broadening their knowledge bases, in turn expanding the contexts in which those models generate reliable results.

By combining generative AI with retrieval systems, RAG models can retrieve and integrate information from multiple data sources in response to complex queries.

Enhanced developer control and model maintenance

Modern organizations constantly process massive quantities of data, from order inputs to market projections to employee turnover and more. Effective data pipeline construction and data storage is paramount for strong RAG implementation.

At the same time, developers and data scientists can tweak the data sources to which models have access at any time. Repositioning a model from one task to another becomes a task of adjusting its external knowledge sources as opposed to fine-tuning or retraining. If fine-tuning is needed, developers can prioritize that work instead of managing the modelโ€™s data sources.

Greater data security

Because RAG connects a model to external knowledge sources rather than incorporating that knowledge into the modelโ€™s training data, it maintains a divide between the model and that external knowledge. Enterprises can use RAG to preserve first-party data while simultaneously granting models access to itโ€”access that can be revoked at any time.

However, enterprises must be vigilant to maintain the security of the external databases themselves. RAG uses vector databases, which use embeddings to convert data points to numerical representations. If these databases are breached, attackers can reverse the vector embedding process and access the original data, especially if the vector database is unencrypted.

RAG use cases

RAG systems essentially enable users to query databases with conversational language. The data-powered question-answering abilities of RAG systems have been applied across a range of use cases, including:

  • Specialized chatbots and virtual assistants
  • Research
  • Content generation
  • Market analysis and product development
  • Knowledge engines
  • Recommendation services

Specialized chatbots and virtual assistants

Enterprises wanting to automate customer support might find that their AI models lack the specialized knowledge needed to adequately assist customers. RAG AI systems plug models into internal data to equip customer support chatbots with the latest knowledge about a companyโ€™s products, services and policies.

The same principle applies to AI avatars and personal assistants. Connecting the underlying model with the userโ€™s personal data and referring to previous interactions provides a more customized user experience.

Research

Able to read internal documents and interface with search engines, RAG models excel at research. Financial analysts can generate client-specific reports with up-to-date market information and prior investment activity, while medical professionals can engage with patient and institutional records.

Content generation

The ability of RAG models to cite authoritative sources can lead to more reliable content generation. While all generative AI models can hallucinate, RAG makes it easier for users to verify outputs for accuracy.

Market analysis and product development

Business leaders can consult social media trends, competitor activity, sector-relevant breaking news and other online sources to better inform business decisions. Meanwhile, product managers can reference customer feedback and user behaviors when considering future development choices.

Knowledge engines

RAG systems can empower employees with internal company information. Streamlined onboarding processes, faster HR support and on-demand guidance for employees in the field are just a few ways businesses can use RAG to enhance job performance.

Recommendation services

By analyzing previous user behavior and comparing that with current offerings, RAG systems power more accurate recommendation services. An e-commerce platform and content delivery service can both use RAG to keep customers engaged and spending.

How does RAG work?

RAG works by combining information retrieval models with generative AI models to produce more authoritative content. RAG systems query a knowledge base and add more context to a user prompt before generating a response.

Standard LLMs source information from their training datasets. RAG adds an information retrieval component to the AI workflow, gathering relevant information and feeding that to the generative AI model to enhance response quality and utility.

RAG systems follow a five-stage process:

A diagram showing a RAG (retrieval augmented generation) process
  • The user submits a prompt.
  • The information retrieval model queries the knowledge base for relevant data.
  • Relevant information is returned from the knowledge base to the integration layer.
  • The RAG system engineers an augmented prompt to the LLM with enhanced context from the retrieved data.
  • The LLM generates an output and returns an output to the user.

This process showcases how RAG gets its name. The RAG system retrieves data from the knowledge base, augments the prompt with added context and generates a response.

Components of a RAG system

RAG systems contain four primary components:

  • The knowledge base: The external data repository for the system.
  • The retriever: An AI model that searches the knowledge base for relevant data.
  • The integration layer: The portion of the RAG architecture that coordinates its overall functioning.
  • The generator: A generative AI model that creates an output based on the user query and retrieved data.

Other components might include a ranker, which ranks retrieved data based on relevance, and an output handler, which formats the generated response for the user.

The knowledge base

The first stage in constructing a RAG system is creating a queryable knowledge base. The external data repository can contain data from countless sources: PDFs, documents, guides, websites, audio files and more. Much of this will be unstructured data, which means that it hasnโ€™t yet been labeled.

RAG systems use a process called embedding to transform data into numerical representations called vectors. The embedding model vectorizes the data in a multidimensional mathematical space, arranging the data points by similarity. Data points judged to be closer in relevance to each other are placed closely together.

Knowledge bases must be continually updated to maintain the RAG systemโ€™s quality and relevance.

LLM inputs are limited to the context window of the model: the amount of data it can process without losing context. Chunking a document into smaller sizes helps ensure that the resulting embeddings will not overwhelm the context window of the LLM in the RAG system.

Chunk size is an important hyperparameter for the RAG system. When chunks are too large, the data points can become too general and fail to correspond directly to potential user queries. But if chunks are too small, the data points can lose semantic coherency.

The retriever

Vectorizing the data prepares the knowledge base for semantic vector search, a technique that identifies points in the database that are similar to the userโ€™s query. Semantic search machine learning algorithms can query massive databases and quickly identify relevant information, reducing latency as compared to traditional keyword searches.

The information retrieval model transforms the userโ€™s query into an embedding and then searches the knowledge base for similar embeddings. Then, its findings are returned from the knowledge base.

The integration layer

The integration layer is the center of the RAG architecture, coordinating the processes and passing data around the network. With the added data from the knowledge base, the RAG system creates a new prompt for the LLM component. This prompt consists of the original user query plus the enhanced context returned by the retrieval model.

RAG systems employ various prompt engineering techniques to automate effective prompt creation and help the LLM return the best possible response. Meanwhile, LLM orchestration frameworks such as the open source LangChain and LlamaIndex or IBMยฎ watsonx Orchestrateโ„ข govern the overall functioning of an AI system.

The generator

The generator creates an output based on the augmented prompt fed to it by the integration layer. The prompt synthesizes the user input with the retrieved data and instructs the generator to consider this data in its response. Generators are typically pretrained language models, such as GPT, Claude or Llama.

What is the difference between RAG and fine-tuning?

The difference between RAG and fine-tuning is that RAG lets an LLM query an external data source while fine-tuning trains an LLM on domain-specific data. Both have the same general goal: to make an LLM perform better in a specified domain.

RAG and fine-tuning are often contrasted but can be used in tandem. Fine-tuning increases a modelโ€™s familiarity with the intended domain and output requirements, while RAG assists the model in generating relevant, high-quality outputs.



๊ฒ€์ƒ‰ ์ฆ๊ฐ• ์ƒ์„ฑ(RAG): ์•„ํ‚คํ…์ฒ˜, ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ๋ฐ ๋ฐœ์ „์— ๋Œ€ํ•œ ํฌ๊ด„์ ์ธ ๊ธฐ์ˆ  ๋ณด๊ณ ์„œ

๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ์—์„œ ์ง€์‹ ๊ธฐ๋ฐ˜์˜ ํ•„์š”์„ฑ

๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ๋“ฑ์žฅ์€ ์ธ๊ณต์ง€๋Šฅ ๋ถ„์•ผ์—์„œ ํ˜๋ช…์ ์ธ ์ด์ •ํ‘œ๋ฅผ ์„ธ์› ์œผ๋ฉฐ, ์ž์—ฐ์–ด ์ดํ•ด ๋ฐ ์ƒ์„ฑ์—์„œ ๋†€๋ผ์šด ๋Šฅ๋ ฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๋ชจ๋ธ์— ์œ ์ฐฝํ•จ์„ ๋ถ€์—ฌํ•˜๋Š” ๋ฐ”๋กœ ๊ทธ ์•„ํ‚คํ…์ฒ˜๋Š” ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ๋‚ดํฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ฆ‰, ์ง€์‹์˜ ์ •์ ์ธ ํŠน์„ฑ๊ณผ ์‚ฌ์‹ค์„ ๊พธ๋ฉฐ๋‚ด๋Š” ๊ฒฝํ–ฅ์ด๋ผ๋Š” ๋‚ด์žฌ์  ์ œ์•ฝ์œผ๋กœ ์ธํ•ด, ์ด๋Ÿฌํ•œ ๋ชจ๋ธ์„ ๊ฒ€์ฆ ๊ฐ€๋Šฅํ•˜๊ณ  ์‹ค์ œ์ ์ธ ์ •๋ณด์— ๊ธฐ๋ฐ˜์„ ๋‘๊ฒŒ ํ•˜๋Š” ํ”„๋ ˆ์ž„์›Œํฌ์— ๋Œ€ํ•œ ์ค‘์š”ํ•œ ํ•„์š”์„ฑ์ด ๋Œ€๋‘๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ๊ฒ€์ƒ‰ ์ฆ๊ฐ• ์ƒ์„ฑ(RAG)์€ ์ด ๋ฌธ์ œ์— ๋Œ€ํ•œ ๊ฒฐ์ •์ ์ธ ํ•ด๊ฒฐ์ฑ…์œผ๋กœ ๋ถ€์ƒํ•˜์—ฌ, LLM์„ ๊ฐ•๋ ฅํ•˜์ง€๋งŒ ๋•Œ๋กœ๋Š” ์‹ ๋ขฐํ•  ์ˆ˜ ์—†๋Š” ์‹œ์Šคํ…œ์—์„œ ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ๊ธ‰ ๋„๊ตฌ๋กœ ๋ณ€๋ชจ์‹œ์ผฐ์Šต๋‹ˆ๋‹ค.

ํŒŒ๋ผ๋ฏธํ„ฐ ๊ธฐ๋ฐ˜ ์ง€์‹์˜ ํ•œ๊ณ„

ํ‘œ์ค€ LLM์˜ ์ง€์‹์€ “ํŒŒ๋ผ๋ฏธํ„ฐ ๊ธฐ๋ฐ˜”์ธ๋ฐ, ์ด๋Š” ๋ชจ๋ธ์˜ ๋‚ด๋ถ€ ํŒŒ๋ผ๋ฏธํ„ฐ(๊ฐ€์ค‘์น˜ ๋ฐ ํŽธํ–ฅ)์— ํ•œ์ •๋œ ํ›ˆ๋ จ ๊ธฐ๊ฐ„ ๋™์•ˆ ์ „์ฒด์ ์œผ๋กœ ์ธ์ฝ”๋”ฉ๋œ๋‹ค๋Š” ์˜๋ฏธ์ž…๋‹ˆ๋‹ค. ์ด ํ›ˆ๋ จ ๊ณผ์ •์€ ๋ฐฉ๋Œ€ํ•˜์ง€๋งŒ ์ •์ ์ธ ๋ฐ์ดํ„ฐ์…‹์— ์˜์กดํ•˜๋ฉฐ, ์ด ๋ฐ์ดํ„ฐ์…‹์€ ๋ชจ๋ธ์ด ์™„์„ฑ๋˜๋ฉด ์‹œ๊ฐ„์ด ๋ฉˆ์ถ˜ ์ƒํƒœ๊ฐ€ ๋ฉ๋‹ˆ๋‹ค. ์ด๋Š” “์ง€์‹ ๋‹จ์ ˆ”์„ ์•ผ๊ธฐํ•˜๋Š”๋ฐ, ์ด๋Š” ๋ชจ๋ธ์ด ์ธ์ง€ํ•˜์ง€ ๋ชปํ•˜๋Š” ์ •๋ณด์˜ ๊ฒฝ๊ณ„์„ ์ž…๋‹ˆ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ, ํ›ˆ๋ จ์ด ๋๋‚œ ํ›„์— ๋ฐœ์ƒํ•œ ์‚ฌ๊ฑด, ๋ฐœ๊ฒฌ ๋˜๋Š” ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด ์งˆ๋ฌธ์„ ๋ฐ›์œผ๋ฉด LLM์€ ๊ทผ๋ณธ์ ์œผ๋กœ ์ •๋ณด์— ์ž…๊ฐํ•œ ๋‹ต๋ณ€์„ ์ œ๊ณตํ•  ์ˆ˜ ์—†์œผ๋ฉฐ, ๋Œ€์‹  ์˜ค๋ž˜๋˜๊ฑฐ๋‚˜ ๋ถ€์ •ํ™•ํ•œ ์ •๋ณด๋ฅผ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋Š” ์ •๋ณด์˜ ์‹ ์„ ๋„์™€ ๊ด€๋ จ์„ฑ์ด ์˜์‚ฌ ๊ฒฐ์ •์— ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๋™์ ์ธ ๊ธฐ์—… ํ™˜๊ฒฝ์—์„œ ํŠนํžˆ ์‹ฌ๊ฐํ•ฉ๋‹ˆ๋‹ค. ๋”์šฑ์ด, ๊ด‘๋ฒ”์œ„ํ•œ ๊ณต๊ฐœ ๋ฐ์ดํ„ฐ๋กœ ํ›ˆ๋ จ๋œ ๋ฒ”์šฉ LLM์€ ๋ณธ์งˆ์ ์œผ๋กœ ์ „๋ฌธ ๋ถ„์•ผ์— ๋Œ€ํ•œ ๊นŠ์ด๊ฐ€ ๋ถ€์กฑํ•˜๋ฉฐ, ๋น„๊ณต๊ฐœ ๋˜๋Š” ๋…์ ์ ์ธ ์กฐ์ง ์ง€์‹์— ์ ‘๊ทผํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. ์ด ๋ฐ์ดํ„ฐ๋Š” ๊ธฐ๋ฐ€์„ฑ์ด ๋†’๊ฑฐ๋‚˜ ๋„ˆ๋ฌด ํ‹ˆ์ƒˆ์‹œ์žฅ์ด์–ด์„œ ์ผ๋ฐ˜์ ์ธ ๋ง๋ญ‰์น˜์— ํฌํ•จ๋  ์ˆ˜ ์—†๊ธฐ ๋•Œ๋ฌธ์— ํ›ˆ๋ จ ์ค‘์— ์ ‘๊ทผํ•  ์ˆ˜ ์—†์œผ๋ฉฐ, ์ด๋กœ ์ธํ•ด LLM์€ ๋งŽ์€ ๋‚ด๋ถ€ ๋น„์ฆˆ๋‹ˆ์Šค ์‚ฌ์šฉ ์‚ฌ๋ก€์—์„œ ๋น„ํšจ์œจ์ ์ด ๋ฉ๋‹ˆ๋‹ค.

AI ํ™˜๊ฐ ํ˜„์ƒ(Hallucination)์˜ ๊ณผ์ œ

ํŒŒ๋ผ๋ฏธํ„ฐ ๊ธฐ๋ฐ˜ ์ง€์‹ ํ•œ๊ณ„์˜ ์ง์ ‘์ ์ธ ๊ฒฐ๊ณผ๋Š” “ํ™˜๊ฐ ํ˜„์ƒ”, ์ฆ‰ ์กฐ์ž‘(confabulation)์ด๋ผ๊ณ ๋„ ์•Œ๋ ค์ง„ ํ˜„์ƒ์ž…๋‹ˆ๋‹ค. ์ด๋Š” LLM์ด ๊ทธ๋Ÿด๋“ฏํ•˜๊ฒŒ ๋“ค๋ฆฌ๊ณ , ์ผ๊ด€์„ฑ ์žˆ์œผ๋ฉฐ, ์ž์‹ ๊ฐ ์žˆ๊ฒŒ ์ „๋‹ฌ๋˜์ง€๋งŒ ์‚ฌ์‹ค์ ์œผ๋กœ๋Š” ๋ถ€์ •ํ™•ํ•˜๊ฑฐ๋‚˜ ์™„์ „ํžˆ ์กฐ์ž‘๋œ ์‘๋‹ต์„ ์ƒ์„ฑํ•˜๋Š” ๊ฒฝํ–ฅ์œผ๋กœ ์ •์˜๋ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ํ–‰๋™์€ ๋ช‡ ๊ฐ€์ง€ ๊ทผ๋ณธ์ ์ธ ์›์ธ์—์„œ ๋น„๋กฏ๋ฉ๋‹ˆ๋‹ค. ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์˜ ๊ฒฉ์ฐจ์— ํ•ด๋‹นํ•˜๋Š” ์งˆ๋ฌธ์ด๋‚˜ ์ง€์‹ ๋‹จ์ ˆ ์‹œ์  ์ดํ›„์˜ ์งˆ๋ฌธ์— ์ง๋ฉดํ–ˆ์„ ๋•Œ, ๋ชจ๋ธ์€ ํ•™์Šต๋œ ํŒจํ„ด์—์„œ ์ถ”๋ก ์„ ์‹œ๋„ํ•˜๋ฉฐ, ๋ณธ์งˆ์ ์œผ๋กœ ์‚ฌ์‹ค์  ์ง„์‹ค๋ณด๋‹ค๋Š” ์–ธ์–ด์  ๊ทธ๋Ÿด๋“ฏํ•จ์„ ์šฐ์„ ์‹œํ•˜๋Š” ๊ต์œก๋œ ์ถ”์ธก์„ ํ•ฉ๋‹ˆ๋‹ค. ํ•ต์‹ฌ์ ์œผ๋กœ LLM์€ ์ง„์‹ค์„ ์ฐพ๋Š” ์—”์ง„์ด ์•„๋‹ˆ๋ผ ํŒจํ„ด ์˜ˆ์ธก ์—”์ง„์ž…๋‹ˆ๋‹ค. ์™ธ๋ถ€์˜ ์‹ค์‹œ๊ฐ„ ์†Œ์Šค์— ๋Œ€ํ•ด ์ž์‹ ์˜ ์ถœ๋ ฅ์„ ์‚ฌ์‹ค ํ™•์ธํ•˜๋Š” ๋‚ด์žฌ๋œ ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ๋ถ€์กฑํ•ฉ๋‹ˆ๋‹ค.

์ผ์ƒ์ ์ธ ์ƒํ™ฉ์—์„œ๋Š” ์žฌ๋ฏธ์žˆ์„ ์ˆ˜ ์žˆ์ง€๋งŒ, ํ™˜๊ฐ ํ˜„์ƒ์€ ์ „๋ฌธ์ ์ธ ํ™˜๊ฒฝ์—์„œ ์‹ฌ๊ฐํ•œ ์ฑ…์ž„ ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ฌธ์ œ์˜ ํ”„๋ ˆ์ž„์€ ์ˆœ์ „ํžˆ ๊ธฐ์ˆ ์ ์ธ ํ•œ๊ณ„์—์„œ ์ค‘์š”ํ•œ ๋น„์ฆˆ๋‹ˆ์Šค ๋ฆฌ์Šคํฌ๋กœ ๋ฐœ์ „ํ–ˆ์Šต๋‹ˆ๋‹ค. ํ•™์ˆ  ๋ฌธํ—Œ์—์„œ ํ™˜๊ฐ ํ˜„์ƒ์€ ์ข…์ข… ๋ชจ๋ธ ๊ฒฐํ•จ์œผ๋กœ ์„ค๋ช…๋ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธฐ์—… ๋ฐ ์‚ฐ์—… ๋งฅ๋ฝ์—์„œ๋Š” ์ด ๊ฒฐํ•จ์˜ ์‹ฌ๊ฐํ•œ ๊ฒฐ๊ณผ, ์ฆ‰ ์ž˜๋ชป๋œ ์ •๋ณด์˜ ํ™•์‚ฐ, ๋ฏผ๊ฐํ•œ ๋ฐ์ดํ„ฐ ํŒจํ„ด์˜ ์ž ์žฌ์  ์œ ์ถœ ๋ฐ ๊ทธ์— ๋”ฐ๋ฅธ ํ‰ํŒ ์†์ƒ์— ์ดˆ์ ์ด ๋งž์ถฐ์ง‘๋‹ˆ๋‹ค. ์˜๋ฃŒ, ๊ธˆ์œต, ๋ฒ•๋ฅ  ์„œ๋น„์Šค์™€ ๊ฐ™์€ “๋ˆ ๋˜๋Š” ์ƒ๋ช…(Your Money or Your Life, YMYL)”์ด๋ผ๋Š” ๊ณ ์œ„ํ—˜ ๋ถ„์•ผ์—์„œ๋Š” ๋‹จ ํ•˜๋‚˜์˜ ํ™˜๊ฐ์ ์ธ ์‘๋‹ต์ด ๋”์ฐํ•œ ๊ฒฐ๊ณผ๋ฅผ ์ดˆ๋ž˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํ™˜๊ฐ ํ˜„์ƒ์„ “๋ฒ„๊ทธ”์—์„œ “๋ฆฌ์Šคํฌ”๋กœ ์žฌ์ •์˜ํ•˜๋Š” ๊ฒƒ์€ RAG๊ฐ€ ๋น ๋ฅด๊ฒŒ ์ฑ„ํƒ๋œ ์ „๋žต์  ํ•„์š”์„ฑ์„ ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค. RAG๋Š” ๋‹จ์ˆœํžˆ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋„๊ตฌ๊ฐ€ ์•„๋‹ˆ๋ผ, AI ์ƒ์„ฑ ์ฝ˜ํ…์ธ ๊ฐ€ ๊ฒ€์ฆ ๊ฐ€๋Šฅํ•œ ์†Œ์Šค๋กœ ์ถ”์ ๋  ์ˆ˜ ์žˆ๋„๋ก ๋ณด์žฅํ•จ์œผ๋กœ์จ ๊ฑฐ๋ฒ„๋„Œ์Šค, ๊ฐ์‚ฌ ๊ฐ€๋Šฅ์„ฑ ๋ฐ ๋ฆฌ์Šคํฌ ์™„ํ™”๋ฅผ ์œ„ํ•œ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ œ๊ณตํ•˜๋Š” ์ฑ…์ž„๊ฐ ์žˆ๋Š” AI์˜ ๊ธฐ๋ณธ ๊ตฌ์„ฑ ์š”์†Œ์ž…๋‹ˆ๋‹ค.

๊ฒ€์ƒ‰ ์ฆ๊ฐ• ์ƒ์„ฑ(RAG) ์†Œ๊ฐœ: ํ•ด๊ฒฐ ํ”„๋ ˆ์ž„์›Œํฌ

๊ฒ€์ƒ‰ ์ฆ๊ฐ• ์ƒ์„ฑ์€ ์ด๋Ÿฌํ•œ ๊ทผ๋ณธ์ ์ธ LLM์˜ ํ•œ๊ณ„๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํŠน๋ณ„ํžˆ ์„ค๊ณ„๋œ AI ํ”„๋ ˆ์ž„์›Œํฌ์ž…๋‹ˆ๋‹ค. RAG์˜ ํ•ต์‹ฌ ์›์น™์€ LLM์˜ ๊ฐ•๋ ฅํ•˜๊ณ  ๋‚ด์žฌ์ ์ธ ํŒŒ๋ผ๋ฏธํ„ฐ ๊ธฐ๋ฐ˜ ์ง€์‹๊ณผ ์™ธ๋ถ€ ์ง€์‹ ๋ฒ ์ด์Šค์— ์ €์žฅ๋œ ๋ฐฉ๋Œ€ํ•˜๊ณ  ๋™์ ์ด๋ฉฐ ๋น„-ํŒŒ๋ผ๋ฏธํ„ฐ์ ์ธ ์ •๋ณด๋ฅผ ์‹œ๋„ˆ์ง€ ํšจ๊ณผ๋ฅผ ๋‚ด์–ด ๊ฒฐํ•ฉํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” LLM์˜ ํ”„๋กœ์„ธ์Šค๋ฅผ ์žฌ์กฐ์ •ํ•˜์—ฌ ์ž‘๋™ํ•ฉ๋‹ˆ๋‹ค. RAG ์‹œ์Šคํ…œ์€ ๋‚ด๋ถ€ ๋ฉ”๋ชจ๋ฆฌ์—์„œ ์ฆ‰์‹œ ์‘๋‹ต์„ ์ƒ์„ฑํ•˜๋Š” ๋Œ€์‹ , ์ง€์ •๋œ ์™ธ๋ถ€ ๋ฐ์ดํ„ฐ ์†Œ์Šค์—์„œ ๊ด€๋ จ์„ฑ ์žˆ๊ณ  ์ตœ์‹ ์ด๋ฉฐ ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ์ •๋ณด๋ฅผ ๋จผ์ € ๊ฒ€์ƒ‰ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฐ ๋‹ค์Œ ์ด ๊ฒ€์ƒ‰๋œ ์ปจํ…์ŠคํŠธ๊ฐ€ ์›๋ž˜์˜ ์ฟผ๋ฆฌ์™€ ํ•จ๊ป˜ LLM์— ์ œ๊ณต๋˜์–ด, ๋ชจ๋ธ์˜ ํ›„์† ์ถœ๋ ฅ์„ ๊ฒ€์ฆ ๊ฐ€๋Šฅํ•œ ์‚ฌ์‹ค์— “๊ธฐ๋ฐ˜”ํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ์ด ํŒจ๋Ÿฌ๋‹ค์ž„ ์ „ํ™˜์€ LLM ์ƒ์„ฑ ์ฝ˜ํ…์ธ ์˜ ์ •ํ™•์„ฑ, ์‹ ๋ขฐ์„ฑ ๋ฐ ์ ์‹œ์„ฑ์„ ํ–ฅ์ƒ์‹œ์ผœ, ์ง€์‹ ์ง‘์•ฝ์  ์ž‘์—…์— ์žˆ์–ด ๋” ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๊ณ  ๊ฐ€์น˜ ์žˆ๋Š” ์ž์‚ฐ์œผ๋กœ ๋ณ€๋ชจ์‹œํ‚ต๋‹ˆ๋‹ค.

๊ฒ€์ƒ‰ ์ฆ๊ฐ• ์ƒ์„ฑ ์‹œ์Šคํ…œ์˜ ๊ตฌ์กฐ

RAG ์‹œ์Šคํ…œ์€ ๋‹จ์ผ์ฒด๊ฐ€ ์•„๋‹ˆ๋ผ ์˜คํ”„๋ผ์ธ๊ณผ ์˜จ๋ผ์ธ ๋‹จ๊ณ„๋กœ ๊ตฌ์„ฑ๋œ ์ •๊ตํ•œ ํŒŒ์ดํ”„๋ผ์ธ์ž…๋‹ˆ๋‹ค. ์˜คํ”„๋ผ์ธ ๋‹จ๊ณ„๋Š” ํšจ์œจ์ ์ธ ๊ฒ€์ƒ‰์„ ์œ„ํ•ด ์ง€์‹ ๋ฒ ์ด์Šค๋ฅผ ์ค€๋น„ํ•˜๋Š” ๊ณผ์ •์ด๋ฉฐ, ์˜จ๋ผ์ธ ๋‹จ๊ณ„๋Š” ์‚ฌ์šฉ์ž์˜ ์ฟผ๋ฆฌ์— ์‹ค์‹œ๊ฐ„์œผ๋กœ ์‹คํ–‰๋˜์–ด ๋‹ต๋ณ€ํ•ฉ๋‹ˆ๋‹ค. ์ด ๊ตฌ์กฐ๋ฅผ ์ดํ•ดํ•˜๋Š” ๊ฒƒ์€ ๊ฐ•๋ ฅํ•œ RAG ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ๊ตฌ์ถ•ํ•˜๊ณ  ์ตœ์ ํ™”ํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค.

์•„ํ‚คํ…์ฒ˜ ๊ฐœ์š” ๋ฐ ๋‹ค์ด์–ด๊ทธ๋žจ

RAG ํŒจํ„ด์€ ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ํ”„๋กœ์„ธ์Šค๋กœ ๊ตฌ์„ฑ๋ฉ๋‹ˆ๋‹ค: ๋ฐ์ดํ„ฐ๋ฅผ ์ค€๋น„ํ•˜๊ธฐ ์œ„ํ•ด ์˜คํ”„๋ผ์ธ์—์„œ ๋ฐœ์ƒํ•˜๋Š” “์ˆ˜์ง‘” ๋˜๋Š” “์ธ๋ฑ์‹ฑ” ํ”„๋กœ์„ธ์Šค์™€ ์‚ฌ์šฉ์ž๊ฐ€ ์งˆ๋ฌธํ•  ๋•Œ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ฐœ์ƒํ•˜๋Š” “์ถ”๋ก ” ๋˜๋Š” “์ฟผ๋ฆฌ” ํ”„๋กœ์„ธ์Šค์ž…๋‹ˆ๋‹ค. ๋‹ค์Œ ๋‹ค์ด์–ด๊ทธ๋žจ์€ ์ „์ฒด ์—”๋“œํˆฌ์—”๋“œ ์•„ํ‚คํ…์ฒ˜๋ฅผ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.

Code snippet

graph TD
    subgraph "์˜คํ”„๋ผ์ธ: ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋ฐ ์ธ๋ฑ์‹ฑ ํŒŒ์ดํ”„๋ผ์ธ"
        A(๋ฐ์ดํ„ฐ ์†Œ์Šค) --> B(๋กœ๋“œ ๋ฐ ์ฒญํฌ);
        B --> C{์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ};
        C --> D(๋ฒกํ„ฐ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค);
    end
    subgraph "์˜จ๋ผ์ธ: ์‹ค์‹œ๊ฐ„ ์ถ”๋ก  ํŒŒ์ดํ”„๋ผ์ธ"
        E[์‚ฌ์šฉ์ž ์ฟผ๋ฆฌ] --> F{์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ};
        F --> G(์œ ์‚ฌ๋„ ๊ฒ€์ƒ‰);
        D --> G;
        G --> H(์ฆ๊ฐ•๋œ ํ”„๋กฌํ”„ํŠธ <br>);
        H --> I{LLM <br> (์ƒ์„ฑ๊ธฐ)};
        I --> J(์ƒ์„ฑ๋œ ์‘๋‹ต);
    end
    style A fill:#D6EAF8,stroke:#333,stroke-width:2px
    style D fill:#D1F2EB,stroke:#333,stroke-width:2px
    style E fill:#FEF9E7,stroke:#333,stroke-width:2px
    style J fill:#E8F8F5,stroke:#333,stroke-width:2px

์•„ํ‚คํ…์ฒ˜ ํ๋ฆ„ ์„ค๋ช…:

  • ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ (์˜คํ”„๋ผ์ธ): ์ด ํ”„๋กœ์„ธ์Šค๋Š” ๋ฌธ์„œ ์ €์žฅ์†Œ, ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ๋˜๋Š” API์™€ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ์™ธ๋ถ€ ์œ„์น˜์—์„œ ๋ฐ์ดํ„ฐ๋ฅผ ์†Œ์‹ฑํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์‹œ์ž‘๋ฉ๋‹ˆ๋‹ค. ์ด ๋ฐ์ดํ„ฐ๋Š” ๋กœ๋“œ, ์ •๋ฆฌ๋˜๊ณ  ์˜๋ฏธ์ ์œผ๋กœ ์ผ๊ด€๋œ ๋” ์ž‘์€ “์ฒญํฌ”๋กœ ๋‚˜๋‰ฉ๋‹ˆ๋‹ค. ๊ฐ ์ฒญํฌ๋Š” ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ์— ์˜ํ•ด ์ฒ˜๋ฆฌ๋˜์–ด ํ…์ŠคํŠธ๋ฅผ ์ˆซ์ž ๋ฒกํ„ฐ ํ‘œํ˜„์œผ๋กœ ๋ณ€ํ™˜ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฒกํ„ฐ ์ž„๋ฒ ๋”ฉ์€ ํŠนํ™”๋œ ๋ฒกํ„ฐ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์— ์ €์žฅ ๋ฐ ์ธ๋ฑ์‹ฑ๋˜์–ด ๊ฒ€์ƒ‰ ๊ฐ€๋Šฅํ•œ ์ง€์‹ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.
  • ์ถ”๋ก  (์˜จ๋ผ์ธ): ์‚ฌ์šฉ์ž๊ฐ€ ์ฟผ๋ฆฌ๋ฅผ ์ œ์ถœํ•˜๋ฉด ์‹ค์‹œ๊ฐ„ ํŒŒ์ดํ”„๋ผ์ธ์ด ํ™œ์„ฑํ™”๋ฉ๋‹ˆ๋‹ค. ์‚ฌ์šฉ์ž์˜ ์ฟผ๋ฆฌ๋Š” ์ˆ˜์ง‘ ๋‹จ๊ณ„์—์„œ ์‚ฌ์šฉ๋œ ๊ฒƒ๊ณผ ๋™์ผํ•œ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฒกํ„ฐ ์ž„๋ฒ ๋”ฉ์œผ๋กœ ๋ณ€ํ™˜๋ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฐ ๋‹ค์Œ ์‹œ์Šคํ…œ์€ ๋ฒกํ„ฐ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์—์„œ ์œ ์‚ฌ๋„ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ์ฟผ๋ฆฌ์™€ ์˜๋ฏธ์ ์œผ๋กœ ๊ฐ€์žฅ ๊ด€๋ จ์„ฑ์ด ๋†’์€ ์ธ๋ฑ์‹ฑ๋œ ๋ฐ์ดํ„ฐ ์ฒญํฌ๋ฅผ ์ฐพ์Šต๋‹ˆ๋‹ค. ์ด ๊ฒ€์ƒ‰๋œ ์ •๋ณด๋Š” ์›๋ž˜ ์‚ฌ์šฉ์ž ์ฟผ๋ฆฌ์™€ ๊ฒฐํ•ฉ๋˜์–ด “์ฆ๊ฐ•๋œ ํ”„๋กฌํ”„ํŠธ”๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. ์ด์ œ ์งˆ๋ฌธ๊ณผ ์‚ฌ์‹ค์  ์ปจํ…์ŠคํŠธ๋ฅผ ๋ชจ๋‘ ํฌํ•จํ•˜๋Š” ์ด ํ’๋ถ€ํ•œ ํ”„๋กฌํ”„ํŠธ๋Š” LLM(์ƒ์„ฑ๊ธฐ)์œผ๋กœ ์ „์†ก๋˜์–ด ์ •๋ณด๋ฅผ ์ข…ํ•ฉํ•˜์—ฌ ์ตœ์ข…์ ์œผ๋กœ ์‚ฌ์‹ค์— ๊ธฐ๋ฐ˜ํ•œ ์‘๋‹ต์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.

๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋ฐ ์ธ๋ฑ์‹ฑ ํŒŒ์ดํ”„๋ผ์ธ (“์˜คํ”„๋ผ์ธ” ๋‹จ๊ณ„)

RAG ์‹œ์Šคํ…œ์ด ์งˆ๋ฌธ์— ๋‹ตํ•˜๊ธฐ ์ „์—, ์™ธ๋ถ€ ์ง€์‹์€ ์„ธ์‹ฌํ•˜๊ฒŒ ์ค€๋น„๋˜๊ณ  ์ธ๋ฑ์‹ฑ๋˜์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์ด ํ”„๋กœ์„ธ์Šค๋Š” ์‹œ์Šคํ…œ์˜ ๊ถ๊ทน์ ์ธ ์„ฑ๋Šฅ์— ๊ธฐ์ดˆ๊ฐ€ ๋ฉ๋‹ˆ๋‹ค.

  • ๋ฌธ์„œ ๋กœ๋”ฉ ๋ฐ ์ „์ฒ˜๋ฆฌ: ์ด ํ”„๋กœ์„ธ์Šค๋Š” ๋ฌธ์„œ ์ €์žฅ์†Œ, ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ๋˜๋Š” API๋ฅผ ํฌํ•จํ•  ์ˆ˜ ์žˆ๋Š” ๋‹ค์–‘ํ•œ ์œ„์น˜์—์„œ ๋ฐ์ดํ„ฐ๋ฅผ ์†Œ์‹ฑํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์‹œ์ž‘๋ฉ๋‹ˆ๋‹ค. ์ด ์›์‹œ ๋ฐ์ดํ„ฐ๋Š” ์ „์ฒ˜๋ฆฌ๋˜๋ฉฐ, ์ด ์ •๋ฆฌ ๋‹จ๊ณ„์—๋Š” ๋ถˆ์šฉ์–ด ์ œ๊ฑฐ, ํ…์ŠคํŠธ ์ •๊ทœํ™” ๋ฐ ์ค‘๋ณต ์ •๋ณด ์ œ๊ฑฐ๊ฐ€ ํฌํ•จ๋  ์ˆ˜ ์žˆ์–ด ์ง€์‹ ๋ฒ ์ด์Šค์˜ ํ’ˆ์งˆ์„ ๋ณด์žฅํ•ฉ๋‹ˆ๋‹ค.
  • ์ฒญํ‚น ์ „๋žต: LLM์€ ์œ ํ•œํ•œ ์ปจํ…์ŠคํŠธ ์ฐฝ์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ณ  ์ง‘์ค‘๋œ ํ…์ŠคํŠธ ์กฐ๊ฐ์— ๋Œ€ํ•ด ๋” ํšจ๊ณผ์ ์œผ๋กœ ์ž‘๋™ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ํฐ ๋ฌธ์„œ๋Š” ๋” ์ž‘๊ณ  ์˜๋ฏธ์ ์œผ๋กœ ์ผ๊ด€๋œ “์ฒญํฌ”๋กœ ๋ถ„ํ• ๋˜์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์ฒญํ‚น ์ „๋žต์˜ ์„ ํƒ์€ ์ค‘์š”ํ•œ ์„ค๊ณ„ ๊ฒฐ์ •์ž…๋‹ˆ๋‹ค. ์ผ๋ฐ˜์ ์ธ ์ ‘๊ทผ ๋ฐฉ์‹์—๋Š” ๊ณ ์ • ํฌ๊ธฐ ์ฒญํ‚น(์˜ˆ: 256 ํ† ํฐ๋งˆ๋‹ค), ๋ฌธ์žฅ ๊ธฐ๋ฐ˜ ์ฒญํ‚น ๋˜๋Š” ๋ฌธ์„œ์˜ ๋…ผ๋ฆฌ์  ๊ตฌ์กฐ๋ฅผ ์กด์ค‘ํ•˜๋Š” ๋” ์ง„๋ณด๋œ ์‚ฌ์šฉ์ž ์ง€์ • ๋ฐฉ๋ฒ•(์˜ˆ: ์„น์…˜ ๋˜๋Š” ๋‹จ๋ฝ์—์„œ ๋‚˜๋ˆ„๊ธฐ)์ด ํฌํ•จ๋ฉ๋‹ˆ๋‹ค.
  • ์ž„๋ฒ ๋”ฉ ์ƒ์„ฑ: ๊ฐ ํ…์ŠคํŠธ ์ฒญํฌ๋Š” BERT์™€ ๊ฐ™์€ ํŠธ๋žœัํฌ๋จธ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์ธ ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ์„ ํ†ต๊ณผํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ชจ๋ธ์€ ํ…์ŠคํŠธ๋ฅผ ๊ณ ์ฐจ์› ์ˆซ์ž ๋ฒกํ„ฐ, ์ฆ‰ ๋ฒกํ„ฐ ์ž„๋ฒ ๋”ฉ์œผ๋กœ ๋ณ€ํ™˜ํ•ฉ๋‹ˆ๋‹ค. ์ด ์ž„๋ฒ ๋”ฉ์€ ์ฒญํฌ์˜ ์˜๋ฏธ์  ์˜๋ฏธ๋ฅผ ํฌ์ฐฉํ•˜์—ฌ ์‹œ์Šคํ…œ์ด ๋‹จ์ˆœํ•œ ํ‚ค์›Œ๋“œ ์ผ์น˜๊ฐ€ ์•„๋‹Œ ๊ฐœ๋…์  ์œ ์‚ฌ์„ฑ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ •๋ณด๋ฅผ ๊ฒ€์ƒ‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ฉ๋‹ˆ๋‹ค.
  • ๋ฒกํ„ฐ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ๋ฐ ์ธ๋ฑ์‹ฑ: ์ƒ์„ฑ๋œ ๋ฒกํ„ฐ ์ž„๋ฒ ๋”ฉ์€ ํŠนํ™”๋œ ๋ฒกํ„ฐ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์— ์ €์žฅ ๋ฐ ์ธ๋ฑ์‹ฑ๋ฉ๋‹ˆ๋‹ค. Faiss, Qdrant ๋˜๋Š” ChromaDB์™€ ๊ฐ™์€ ์ด๋Ÿฌํ•œ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋Š” ํšจ์œจ์ ์ธ ๋ฒกํ„ฐ ์œ ์‚ฌ๋„ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ฐ ๊ณ ๋„๋กœ ์ตœ์ ํ™”๋˜์–ด ์žˆ์–ด ์‹œ์Šคํ…œ์ด ์‚ฌ์šฉ์ž์˜ ์ฟผ๋ฆฌ์™€ ์˜๋ฏธ์ ์œผ๋กœ ๊ฐ€์žฅ ๊ฐ€๊นŒ์šด ์ฒญํฌ๋ฅผ ์‹ ์†ํ•˜๊ฒŒ ์ฐพ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

ํ•ต์‹ฌ RAG ์›Œํฌํ”Œ๋กœ์šฐ: ์ฟผ๋ฆฌ์—์„œ ์‘๋‹ต๊นŒ์ง€ (“์˜จ๋ผ์ธ” ๋‹จ๊ณ„)

์ง€์‹ ๋ฒ ์ด์Šค๊ฐ€ ์ธ๋ฑ์‹ฑ๋˜๋ฉด ์‹œ์Šคํ…œ์€ ์‹ค์‹œ๊ฐ„ ๋‹ค๋‹จ๊ณ„ ์›Œํฌํ”Œ๋กœ์šฐ๋ฅผ ํ†ตํ•ด ์‚ฌ์šฉ์ž ์ฟผ๋ฆฌ๋ฅผ ์ฒ˜๋ฆฌํ•  ์ค€๋น„๊ฐ€ ๋ฉ๋‹ˆ๋‹ค.

  • 1๋‹จ๊ณ„: ๊ฒ€์ƒ‰๊ธฐ (Retriever) ๊ฒ€์ƒ‰๊ธฐ์˜ ์ฑ…์ž„์€ ์ธ๋ฑ์‹ฑ๋œ ์ง€์‹ ๋ฒ ์ด์Šค์—์„œ ๊ฐ€์žฅ ๊ด€๋ จ์„ฑ ์žˆ๋Š” ์ •๋ณด ์กฐ๊ฐ์„ ์ฐพ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
    • ์ฟผ๋ฆฌ ์ธ์ฝ”๋”ฉ: ์‚ฌ์šฉ์ž๊ฐ€ ์ฟผ๋ฆฌ๋ฅผ ์ œ์ถœํ•˜๋ฉด ๋ฌธ์„œ๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋œ ๊ฒƒ๊ณผ ์ •ํ™•ํžˆ ๋™์ผํ•œ ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฒกํ„ฐ ์ž„๋ฒ ๋”ฉ์œผ๋กœ ๋ณ€ํ™˜๋ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ฟผ๋ฆฌ์™€ ๋ฌธ์„œ๊ฐ€ ๋™์ผํ•œ ์˜๋ฏธ ๋ฒกํ„ฐ ๊ณต๊ฐ„์— ์กด์žฌํ•˜๊ฒŒ ๋˜์–ด ๋น„๊ต๊ฐ€ ๊ฐ€๋Šฅํ•ด์ง‘๋‹ˆ๋‹ค.
    • ์œ ์‚ฌ๋„ ๊ฒ€์ƒ‰: ๊ฒ€์ƒ‰๊ธฐ๋Š” ๋ฒกํ„ฐ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ๋‚ด์—์„œ ์œ ์‚ฌ๋„ ๊ฒ€์ƒ‰์„ ์‹คํ–‰ํ•ฉ๋‹ˆ๋‹ค. ์ฟผ๋ฆฌ ๋ฒกํ„ฐ์™€ ์ธ๋ฑ์Šค์˜ ๋ชจ๋“  ์ฒญํฌ ๋ฒกํ„ฐ ์‚ฌ์ด์˜ “๊ฑฐ๋ฆฌ”๋ฅผ ๊ณ„์‚ฐํ•˜์—ฌ ์ฟผ๋ฆฌ์™€ ์˜๋ฏธ์ ์œผ๋กœ ๊ฐ€์žฅ ๊ฐ€๊นŒ์šด ์ƒ์œ„ K๊ฐœ์˜ ์ฒญํฌ๋ฅผ ์‹๋ณ„ํ•ฉ๋‹ˆ๋‹ค. ๊ทผ์‚ฌ ์ตœ๊ทผ์ ‘ ์ด์›ƒ(ANN) ๊ฒ€์ƒ‰๊ณผ ๊ฐ™์€ ๊ธฐ์ˆ ์€ ์ˆ˜์‹ญ์–ต ๊ฐœ์˜ ๋ฒกํ„ฐ๊ฐ€ ์žˆ๋”๋ผ๋„ ์ด ํ”„๋กœ์„ธ์Šค๋ฅผ ํšจ์œจ์ ์œผ๋กœ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด ์ž์ฃผ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.
    • ์ˆœ์œ„ ์ง€์ • ๋ฐ ํ•„ํ„ฐ๋ง: ๊ฒ€์ƒ‰๋œ ์ฒญํฌ๋Š” ๊ด€๋ จ์„ฑ ์ ์ˆ˜์— ๋”ฐ๋ผ ์ˆœ์œ„๊ฐ€ ๋งค๊ฒจ์ง€๋ฉฐ, ์ผ๋ฐ˜์ ์œผ๋กœ ๊ฐ€์žฅ ๋†’์€ ์ˆœ์œ„์˜ ๋ฌธ์„œ ์ค‘ ์†Œ์ˆ˜(์˜ˆ: ์ƒ์œ„ 5๊ฐœ ๋˜๋Š” 10๊ฐœ)๋งŒ์ด ๋‹ค์Œ ๋‹จ๊ณ„๋กœ ์ „๋‹ฌ๋ฉ๋‹ˆ๋‹ค.
  • 2๋‹จ๊ณ„: ์ฆ๊ฐ• (Augmentation) ์ด ๋‹จ๊ณ„์—์„œ๋Š” ๊ฒ€์ƒ‰๋œ ์ •๋ณด๊ฐ€ LLM์„ ์œ„ํ•ด ์ค€๋น„๋ฉ๋‹ˆ๋‹ค.
    • ์ปจํ…์ŠคํŠธ ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง: ์ตœ์ƒ์œ„ ์ˆœ์œ„ ๋ฌธ์„œ ์ฒญํฌ์˜ ๋‚ด์šฉ์€ ์‚ฌ์šฉ์ž์˜ ์›๋ž˜ ์ฟผ๋ฆฌ์™€ ํ•ฉ์„ฑ๋˜์–ด ์ƒˆ๋กญ๊ณ  “์ฆ๊ฐ•๋œ” ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. ๋•Œ๋กœ๋Š” “ํ”„๋กฌํ”„ํŠธ ์Šคํ„ฐํ•‘”์ด๋ผ๊ณ ๋„ ํ•˜๋Š” ์ด ๊ธฐ์ˆ ์€ LLM์— ํ•„์š”ํ•œ ์™ธ๋ถ€ ์ปจํ…์ŠคํŠธ๋ฅผ ์ œ๊ณตํ•˜์—ฌ ์ œ๊ณต๋œ ์‚ฌ์‹ค์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹ต๋ณ€์„ ๊ณต์‹ํ™”ํ•˜๋„๋ก ์ง€์‹œํ•ฉ๋‹ˆ๋‹ค.
  • 3๋‹จ๊ณ„: ์ƒ์„ฑ๊ธฐ (Generator) ์ด๊ฒƒ์€ LLM์ด ๋‹ต๋ณ€์„ ์ƒ์„ฑํ•˜๋Š” ๋งˆ์ง€๋ง‰ ๋‹จ๊ณ„์ž…๋‹ˆ๋‹ค.
    • ์‘๋‹ต ์ƒ์„ฑ: ์ฆ๊ฐ•๋œ ํ”„๋กฌํ”„ํŠธ๋Š” GPT-4 ๋˜๋Š” Llama2์™€ ๊ฐ™์€ ๊ฐ•๋ ฅํ•œ LLM์ธ ์ƒ์„ฑ๊ธฐ๋กœ ์ „์†ก๋ฉ๋‹ˆ๋‹ค. LLM์€ ๊ณ ๊ธ‰ ์–ธ์–ด ๊ธฐ๋Šฅ์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ฒ€์ƒ‰๋œ ์ฒญํฌ์˜ ์ •๋ณด์™€ ์ž์ฒด ๋‚ด๋ถ€ ์ง€์‹์„ ํ†ตํ•ฉํ•˜์—ฌ ์ผ๊ด€์„ฑ ์žˆ๊ณ  ์ž˜ ๊ตฌ์„ฑ๋˜์—ˆ์œผ๋ฉฐ ๋ฌธ๋งฅ์ ์œผ๋กœ ๊ด€๋ จ๋œ ์‘๋‹ต์„ ์ข…ํ•ฉํ•ฉ๋‹ˆ๋‹ค.

RAG ํŒŒ์ดํ”„๋ผ์ธ์€ ๋ณตํ•ฉ์ ์ธ ๊ฒฐ์ •์˜ ์—ฐ์†์œผ๋กœ ๊ธฐ๋Šฅํ•˜๋ฉฐ, ์ดˆ๊ธฐ ๋‹จ๊ณ„์—์„œ ๋‚ด๋ฆฐ ์„ ํƒ์ด ์ตœ์ข… ์ถœ๋ ฅ ํ’ˆ์งˆ์— ๋ถˆ๊ท ํ˜•ํ•˜๊ณ  ๋น„์„ ํ˜•์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์นฉ๋‹ˆ๋‹ค. RAG ์‹œ์Šคํ…œ์˜ ์ผ๋ฐ˜์ ์ธ ์‹คํŒจ ์ง€์ ์€ ์‹œ์Šคํ…œ์ด ๊ด€๋ จ ์—†๊ฑฐ๋‚˜ ๋ถˆ์™„์ „ํ•œ ์ปจํ…์ŠคํŠธ๋ฅผ ๊ฐ€์ ธ์˜ค๋Š” ๋‚ฎ์€ ๊ฒ€์ƒ‰ ํ’ˆ์งˆ์ž…๋‹ˆ๋‹ค. ์ด ์‹คํŒจ์˜ ๊ทผ๋ณธ ์›์ธ์€ ์ •๊ตํ•œ ๊ฒ€์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์•„๋‹ˆ๋ผ ์‚ฌ์†Œํ•ด ๋ณด์ด๋Š” ๋ฐ์ดํ„ฐ ์ค€๋น„ ๋‹จ๊ณ„์— ์žˆ๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์Šต๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์ค‘์š”ํ•œ ์ •๋ณด ์กฐ๊ฐ์ด ์ดˆ๊ธฐ ์ฒ˜๋ฆฌ ์ค‘์— ์‹ค์ˆ˜๋กœ ๋‘ ๊ฐœ์˜ ๊ฐœ๋ณ„ ์ฒญํฌ๋กœ ๋ถ„ํ• ๋˜๋ฉด ์–ด๋–ค ๊ฒ€์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋„ ๊ทธ ์™„์ „ํ•œ ์˜๋ฏธ ๋‹จ์œ„๋ฅผ ๋ณต๊ตฌํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. ์ด๋Š” ์‹คํŒจ์˜ ์—ฐ์‡„๋ฅผ ๋งŒ๋“ญ๋‹ˆ๋‹ค: ์ž˜๋ชป๋œ ์ฒญํ‚น์€ ๋‹จํŽธํ™”๋œ ์ž„๋ฒ ๋”ฉ์œผ๋กœ ์ด์–ด์ง€๊ณ , ์ด๋Š” ์„ฑ๊ณต์ ์ธ ์˜๋ฏธ ์ผ์น˜๋ฅผ ๋ฐฉํ•ดํ•˜์—ฌ ๋‚ฎ์€ ๊ฒ€์ƒ‰ ํ’ˆ์งˆ์„ ์ดˆ๋ž˜ํ•˜๋ฉฐ, ๊ถ๊ทน์ ์œผ๋กœ LLM์ด ๋ถ€์ ์ ˆํ•œ ์ปจํ…์ŠคํŠธ๋ฅผ ์ˆ˜์‹ ํ•˜์—ฌ ํ™˜๊ฐ์ ์ด๊ฑฐ๋‚˜ ๊ด€๋ จ ์—†๋Š” ๋‹ต๋ณ€์„ ์ƒ์„ฑํ•˜๊ฒŒ ๋งŒ๋“ญ๋‹ˆ๋‹ค. ์ด๋Š” RAG ์‹œ์Šคํ…œ์˜ ์ „๋ฐ˜์ ์ธ ํ’ˆ์งˆ์ด ๊ฐ€์žฅ ์ง„๋ณด๋œ ๊ตฌ์„ฑ ์š”์†Œ(LLM)๊ฐ€ ์•„๋‹ˆ๋ผ ๊ฐ€์žฅ “์•ฝํ•œ ์—ฐ๊ฒฐ ๊ณ ๋ฆฌ”, ์ฆ‰ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋ฐ ์ฒญํ‚น ๋‹จ๊ณ„์— ์˜ํ•ด ๊ฒฐ์ •๋œ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ฌธ์„œ ๋ถ„์„ ๋ฐ ์ฒญํ‚น ์ „๋žต ์ตœ์ ํ™”์— ๋Œ€ํ•œ ์ „๋žต์  ํˆฌ์ž๋Š” ๋‹จ์ˆœํžˆ ์ƒ์„ฑ๊ธฐ ๋ชจ๋ธ์„ ์—…๊ทธ๋ ˆ์ด๋“œํ•˜๋Š” ๊ฒƒ๋ณด๋‹ค ์ตœ์ข… ๋‹ต๋ณ€ ํ’ˆ์งˆ์—์„œ ํ›จ์”ฌ ๋” ํฐ ํˆฌ์ž ์ˆ˜์ต๋ฅ ์„ ๊ฐ€์ ธ์˜ค๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์Šต๋‹ˆ๋‹ค.

ํ›„์ฒ˜๋ฆฌ ๋ฐ ๊ฒ€์ฆ

๋งŽ์€ ํ”„๋กœ๋•์…˜๊ธ‰ RAG ์‹œ์Šคํ…œ์—์„œ ์„ ํƒ ์‚ฌํ•ญ์ด์ง€๋งŒ ๋งค์šฐ ๊ฐ€์น˜ ์žˆ๋Š” ์ตœ์ข… ๋‹จ๊ณ„๋Š” ํ›„์ฒ˜๋ฆฌ์ž…๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์—๋Š” ์ƒ์„ฑ๋œ ์‘๋‹ต์„ ์†Œ์Šค ๋ฌธ์„œ์™€ ๋น„๊ตํ•˜์—ฌ ์‚ฌ์‹ค์„ ํ™•์ธํ•˜๊ฑฐ๋‚˜, ๊ฐ„๊ฒฐ์„ฑ์„ ์œ„ํ•ด ๊ธด ๋‹ต๋ณ€์„ ์š”์•ฝํ•˜๊ฑฐ๋‚˜, ๊ฐ€๋…์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ์ถœ๋ ฅ์„ ์„œ์‹ ์ง€์ •ํ•˜๋Š” ๊ฒƒ์ด ํฌํ•จ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ฒฐ์ •์ ์œผ๋กœ, ์ด ๋‹จ๊ณ„์—๋Š” ์ƒ์„ฑ๋œ ์ง„์ˆ ์„ ์ •๋ณด๊ฐ€ ๊ฒ€์ƒ‰๋œ ํŠน์ • ์†Œ์Šค ๋ฌธ์„œ์— ๋‹ค์‹œ ์—ฐ๊ฒฐํ•˜๋Š” ์ธ์šฉ ๋˜๋Š” ์ฐธ์กฐ๋ฅผ ์ถ”๊ฐ€ํ•˜๋Š” ๊ฒƒ์ด ์ข…์ข… ํฌํ•จ๋ฉ๋‹ˆ๋‹ค. ์ด ๊ธฐ๋Šฅ์€ ํˆฌ๋ช…์„ฑ์„ ์ œ๊ณตํ•˜๊ณ  ์‚ฌ์šฉ์ž๊ฐ€ ์ง์ ‘ ์ •๋ณด๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋ฏ€๋กœ ์‚ฌ์šฉ์ž ์‹ ๋ขฐ๋ฅผ ๊ตฌ์ถ•ํ•˜๋Š” ๋ฐ ๊ธฐ๋ณธ์ด ๋ฉ๋‹ˆ๋‹ค.

RAG ํŒจ๋Ÿฌ๋‹ค์ž„์˜ ์ง„ํ™”

๊ฒ€์ƒ‰ ์ฆ๊ฐ• ์ƒ์„ฑ ๋ถ„์•ผ๋Š” ๋‹จ์ˆœํ•˜๊ณ  ์„ ํ˜•์ ์ธ ํŒŒ์ดํ”„๋ผ์ธ์—์„œ ๋งค์šฐ ์ •๊ตํ•˜๊ณ  ๋ชจ๋“ˆํ™”๋˜์—ˆ์œผ๋ฉฐ ์ ์‘ ๊ฐ€๋Šฅํ•œ ์•„ํ‚คํ…์ฒ˜๋กœ ๋น ๋ฅด๊ฒŒ ๋ฐœ์ „ํ•ด ์™”์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐœ์ „์€ LLM์— ์ง€์‹์„ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ๊ทธ ์ง€์‹์„ ์ฐพ๊ณ  ์‚ฌ์šฉํ•˜๋Š” ๋ฐ ๋” ํšจ๊ณผ์ ์ธ ์ „๋žต์„ ๋ถ€์—ฌํ•˜๋ ค๋Š” ์ปค์ ธ๊ฐ€๋Š” ์•ผ๋ง์„ ๋ฐ˜์˜ํ•ฉ๋‹ˆ๋‹ค. ์ด ์ง„ํ™”๋Š” ํฌ๊ฒŒ ์„ธ ๊ฐ€์ง€ ํŒจ๋Ÿฌ๋‹ค์ž„์œผ๋กœ ๋ถ„๋ฅ˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค: Naive, Advanced, Modular RAG.

  • Naive RAG (์ˆœ์ง„ํ•œ RAG) Naive RAG๋Š” “๊ฒ€์ƒ‰ ํ›„ ์ฝ๊ธฐ” ๋˜๋Š” “์ธ๋ฑ์‹ฑ-๊ฒ€์ƒ‰-์ƒ์„ฑ” ํ”„๋กœ์„ธ์Šค๋กœ ์ข…์ข… ์„ค๋ช…๋˜๋Š” ๊ธฐ๋ณธ ์•„ํ‚คํ…์ฒ˜๋ฅผ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค. ์ด๋Š” ์ด์ „ ์„น์…˜์—์„œ ์ž์„ธํžˆ ์„ค๋ช…๋œ ๊ณ ์ „์ ์ธ ์›Œํฌํ”Œ๋กœ์šฐ๋กœ, ChatGPT์™€ ๊ฐ™์€ ๊ฐ•๋ ฅํ•œ ์ƒ์„ฑ ๋ชจ๋ธ์˜ ๋“ฑ์žฅ์œผ๋กœ ๋„๋ฆฌ ์ธ๊ธฐ๋ฅผ ์–ป์—ˆ์Šต๋‹ˆ๋‹ค. ํšจ๊ณผ์ ์ด๊ธฐ๋Š” ํ•˜์ง€๋งŒ, ์ด ๊ฐ„๋‹จํ•œ ์ ‘๊ทผ ๋ฐฉ์‹์€ ๋” ์ง„๋ณด๋œ ๊ธฐ์ˆ  ๊ฐœ๋ฐœ์„ ์ด‰๋ฐœํ•œ ๋ช‡ ๊ฐ€์ง€ ํ•œ๊ณ„์— ๋ถ€๋”ชํ˜”์Šต๋‹ˆ๋‹ค.
    • ๊ฒ€์ƒ‰ ๋ฌธ์ œ: ๋‹จ์ˆœํ•œ ๊ฒ€์ƒ‰ ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ์ข…์ข… ์ •๋ฐ€๋„์™€ ์žฌํ˜„์œจ์— ์–ด๋ ค์›€์„ ๊ฒช์Šต๋‹ˆ๋‹ค. ์ฟผ๋ฆฌ์˜ ์˜๋„์™€ ๋‹จ์ง€ ์ฃผ๋ณ€์ ์œผ๋กœ ๊ด€๋ จ๋œ ์ฒญํฌ๋ฅผ ๊ฒ€์ƒ‰ํ•˜๊ฑฐ๋‚˜, ๋ฐ˜๋Œ€๋กœ ๋‹ค๋ฅธ ์šฉ์–ด๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ์ค‘์š”ํ•œ ์ •๋ณด ์กฐ๊ฐ์„ ๋†“์น  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค(“์–ดํœ˜ ๋ถˆ์ผ์น˜” ๋ฌธ์ œ).
    • ์ƒ์„ฑ ์–ด๋ ค์›€: ์ตœ์ข… ์‘๋‹ต์˜ ํ’ˆ์งˆ์€ ๊ฒ€์ƒ‰๋œ ์ปจํ…์ŠคํŠธ์˜ ํ’ˆ์งˆ์— ํฌ๊ฒŒ ์˜์กดํ•ฉ๋‹ˆ๋‹ค. ์ปจํ…์ŠคํŠธ๊ฐ€ ์žก์Œ์ด ๋งŽ๊ฑฐ๋‚˜, ๊ด€๋ จ์ด ์—†๊ฑฐ๋‚˜, ๋ชจ์ˆœ๋˜๋Š” ๊ฒฝ์šฐ ์ƒ์„ฑ๊ธฐ๋Š” ํ™˜๊ฐ ํ˜„์ƒ์„ ์ผ์œผํ‚ค๊ฑฐ๋‚˜ ๊ด€๋ จ ์—†๊ณ  ํŽธํ–ฅ๋œ ์ถœ๋ ฅ์„ ์ƒ์„ฑํ•˜๊ธฐ ์‰ฝ์Šต๋‹ˆ๋‹ค.
    • ์ฆ๊ฐ• ์žฅ์• ๋ฌผ: ๊ฒ€์ƒ‰๋œ ํ…์ŠคํŠธ ์กฐ๊ฐ์„ LLM์˜ ์ž์ฒด ์ƒ์„ฑ ํ๋ฆ„๊ณผ ์›ํ™œํ•˜๊ฒŒ ํ†ตํ•ฉํ•˜๋Š” ๋ฐ ์ข…์ข… ์–ด๋ ค์›€์ด ์žˆ์–ด, ์‘๋‹ต์ด ๋‹จ์ ˆ๋˜๊ฑฐ๋‚˜, ๋ฐ˜๋ณต์ ์ด๊ฑฐ๋‚˜, ๋ฌธ์ฒด์ ์œผ๋กœ ์ผ๊ด€์„ฑ์ด ์—†๊ฒŒ ๋А๊ปด์งˆ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  • Advanced RAG (๊ณ ๊ธ‰ RAG) Advanced RAG ํŒจ๋Ÿฌ๋‹ค์ž„์€ ํ•ต์‹ฌ ๊ฒ€์ƒ‰ ๋‹จ๊ณ„ ์ „ํ›„์— ์ค‘์š”ํ•œ ์ตœ์ ํ™” ๋‹จ๊ณ„๋ฅผ ๋„์ž…ํ•˜์—ฌ LLM์— ์ œ๊ณต๋˜๋Š” ์ปจํ…์ŠคํŠธ์˜ ํ’ˆ์งˆ๊ณผ ๊ด€๋ จ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ํ–ฅ์ƒ์€ ์ฃผ๋กœ ๋‘ ๊ฐ€์ง€ ์˜์—ญ์— ์ค‘์ ์„ ๋‘ก๋‹ˆ๋‹ค.
    • ์‚ฌ์ „ ๊ฒ€์ƒ‰ ์ตœ์ ํ™”: ์ด๋Ÿฌํ•œ ์ „๋žต์€ ๊ฒ€์ƒ‰๊ธฐ์— ๋Œ€ํ•œ ์ž…๋ ฅ์„ ๊ฐœ์„ ํ•˜๋Š” ๋ฐ ์ค‘์ ์„ ๋‘ก๋‹ˆ๋‹ค. ํ•ต์‹ฌ ๊ธฐ์ˆ ์€ ์ฟผ๋ฆฌ ๋ณ€ํ™˜ ๋˜๋Š” ์ฟผ๋ฆฌ ์žฌ์ž‘์„ฑ์ž…๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์„œ ์ดˆ๊ธฐ ์‚ฌ์šฉ์ž ์ฟผ๋ฆฌ๋Š” ๋” ๊ตฌ์ฒด์ ์œผ๋กœ ๋งŒ๋“ค๊ฑฐ๋‚˜, ์ฒ ์ž ์˜ค๋ฅ˜๋ฅผ ์ˆ˜์ •ํ•˜๊ฑฐ๋‚˜, ์ง€์‹ ๋ฒ ์ด์Šค์˜ ์–ธ์–ด ๋ฐ ๊ตฌ์กฐ์™€ ๋” ์ž˜ ์ •๋ ฌ๋˜๋„๋ก ๋ถ„์„ ๋ฐ ์ˆ˜์ •๋˜์–ด ์„ฑ๊ณต์ ์ธ ๊ฒ€์ƒ‰ ๊ฐ€๋Šฅ์„ฑ์„ ๋†’์ž…๋‹ˆ๋‹ค.
    • ์‚ฌํ›„ ๊ฒ€์ƒ‰ ์ตœ์ ํ™”: ์ด๋Ÿฌํ•œ ์ „๋žต์€ ๊ฒ€์ƒ‰๊ธฐ์˜ ์ถœ๋ ฅ์„ ๊ฐœ์„ ํ•˜๋Š” ๋ฐ ์ค‘์ ์„ ๋‘ก๋‹ˆ๋‹ค. ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๊ธฐ์ˆ ์€ ์žฌ์ˆœ์œ„ํ™”(re-ranking)์ž…๋‹ˆ๋‹ค. ์ด ๋‹จ๊ณ„์—์„œ ๊ฒ€์ƒ‰๊ธฐ์˜ ์ƒ์œ„ K๊ฐœ ๋ฌธ์„œ ์ดˆ๊ธฐ ๋ชฉ๋ก์€ ๋‘ ๋ฒˆ์งธ, ๋” ๊ฐ•๋ ฅํ•œ ๋ชจ๋ธ(์ข…์ข… ๊ต์ฐจ ์ธ์ฝ”๋”)๋กœ ์ „๋‹ฌ๋ฉ๋‹ˆ๋‹ค. ์ด ์žฌ์ˆœ์œ„ ๋ชจ๋ธ์€ ์ฟผ๋ฆฌ์™€ ๊ฐ ๋ฌธ์„œ ๊ฐ„์˜ ์˜๋ฏธ์  ๊ด€๋ จ์„ฑ์— ๋Œ€ํ•ด ๋” ์„ธ๋ถ„ํ™”๋œ ํ‰๊ฐ€๋ฅผ ์ˆ˜ํ–‰ํ•˜์—ฌ ๊ฐ€์žฅ ๊ด€๋ จ์„ฑ ์žˆ๋Š” ๋ฌธ์„œ๋ฅผ ๋ชฉ๋ก์˜ ๋งจ ์œ„๋กœ ์˜ฌ๋ฆฌ๋„๋ก ์ˆœ์„œ๋ฅผ ๋‹ค์‹œ ์ •๋ ฌํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ๋…ธ์ด์ฆˆ๋ฅผ ์ค„์ด๊ณ  ์ƒ์„ฑ๊ธฐ๊ฐ€ ์ตœ๊ณ  ํ’ˆ์งˆ์˜ ์ปจํ…์ŠคํŠธ๋ฅผ ์ˆ˜์‹ ํ•˜๋„๋ก ๋ณด์žฅํ•˜๋Š” ์ค‘์š”ํ•œ ํ•„ํ„ฐ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค.
  • Modular RAG (๋ชจ๋“ˆํ˜• RAG) ๋ชจ๋“ˆํ˜• RAG๋Š” ๊ฒฝ์ง๋œ ์„ ํ˜• ํŒŒ์ดํ”„๋ผ์ธ์—์„œ ์ƒํ˜ธ ์—ฐ๊ฒฐ๋œ ์ „๋ฌธ ๋ชจ๋“ˆ๋กœ ๊ตฌ์„ฑ๋œ ๋” ์œ ์—ฐํ•˜๊ณ  ๊ฐ•๋ ฅํ•œ ํ”„๋ ˆ์ž„์›Œํฌ๋กœ์˜ ์ค‘์š”ํ•œ ์•„ํ‚คํ…์ฒ˜ ์ „ํ™˜์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. ์ด ์ ‘๊ทผ ๋ฐฉ์‹์€ ๋” ํฐ ์ ์‘์„ฑ๊ณผ ๋” ๋ณต์žกํ•œ ๊ธฐ๋Šฅ์˜ ํ†ตํ•ฉ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ๋ชจ๋“ˆํ˜• RAG ์‹œ์Šคํ…œ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ๊ต์ฒด ๊ฐ€๋Šฅํ•˜๊ฑฐ๋‚˜ ์ถ”๊ฐ€์ ์ธ ๊ตฌ์„ฑ ์š”์†Œ๋ฅผ ํฌํ•จํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
    • ์—ฌ๋Ÿฌ ๊ฒ€์ƒ‰ ์ „๋žต(์˜ˆ: ๋ฒกํ„ฐ ๊ฒ€์ƒ‰, ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰, ๊ทธ๋ž˜ํ”„ ๊ธฐ๋ฐ˜ ๊ฒ€์ƒ‰)์„ ์‚ฌ์šฉํ•˜๊ณ  ๋‹ค๋ฅธ ์†Œ์Šค๋ฅผ ์ฟผ๋ฆฌํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒ€์ƒ‰ ๋ชจ๋“ˆ.
    • ๋Œ€ํ™” ๊ธฐ๋ก์„ ์œ ์ง€ํ•˜์—ฌ ์‹œ์Šคํ…œ์ด ๋‹ค์ค‘ ํ„ด ๋Œ€ํ™” ๋ฐ ํ›„์† ์งˆ๋ฌธ์„ ํšจ๊ณผ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๋ฉ”๋ชจ๋ฆฌ ๋ชจ๋“ˆ.
    • ๋‹ค๋‹จ๊ณ„ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ์ถ”๋ก  ๋ชจ๋“ˆ. ์ด๋Š” ์ธ๊ฐ„์˜ ์—ฐ๊ตฌ ๊ณผ์ •์„ ๋ชจ๋ฐฉํ•œ ๊ฒƒ์œผ๋กœ, ์ดˆ๊ธฐ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ›„์† ๊ฒ€์ƒ‰ ๋‹จ๊ณ„๋ฅผ ์œ„ํ•œ ์ƒˆ๋กญ๊ณ  ๋” ๊ตฌ์ฒด์ ์ธ ์ฟผ๋ฆฌ๋ฅผ ๊ณต์‹ํ™”ํ•จ์œผ๋กœ์จ ์‹œ์Šคํ…œ์ด ์—ฌ๋Ÿฌ ์†Œ์Šค์—์„œ ์ •๋ณด๋ฅผ ์ข…ํ•ฉํ•ด์•ผ ํ•˜๋Š” ๋ณต์žกํ•œ ์งˆ๋ฌธ์„ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ฉ๋‹ˆ๋‹ค.

์ด๋Ÿฌํ•œ ๋ชจ๋“ˆ์„ฑ์€ ์‹œ์Šคํ…œ์˜ ๊ธฐ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ํŠน์ • ๊ตฌ์„ฑ ์š”์†Œ๋ฅผ ๋ฏธ์„ธ ์กฐ์ •ํ•˜๊ฑฐ๋‚˜ ๊ฐ•ํ™” ํ•™์Šต์„ ์‚ฌ์šฉํ•˜์—ฌ ์‹œ๊ฐ„์ด ์ง€๋‚จ์— ๋”ฐ๋ผ ๊ฒ€์ƒ‰ ์ „๋žต์„ ์ตœ์ ํ™”ํ•˜๋Š” ๊ฒƒ๊ณผ ๊ฐ™์€ ๋ณด์™„์ ์ธ AI ๊ธฐ์ˆ ์˜ ์›ํ™œํ•œ ํ†ตํ•ฉ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. Naive์—์„œ Advanced, ๊ทธ๋ฆฌ๊ณ  ๋งˆ์ง€๋ง‰์œผ๋กœ Modular RAG๋กœ์˜ ์ง„ํ™” ๊ฒฝ๋กœ๋Š” ๋‹จ์ˆœํžˆ ์•„ํ‚คํ…์ฒ˜ ๋ณต์žก์„ฑ์˜ ์ฆ๊ฐ€ ๊ทธ ์ด์ƒ์ž…๋‹ˆ๋‹ค. ์ด๋Š” ์ธ์ง€ ๋Šฅ๋ ฅ์˜ ๋ฐœ์ „์„ ๋ฐ˜์˜ํ•ฉ๋‹ˆ๋‹ค. Naive RAG๋Š” ํ•™์ƒ์ด ๋ฐฑ๊ณผ์‚ฌ์ „์—์„œ ๋‹จ์ผ ์‚ฌ์‹ค์„ ์ฐพ์•„ ์งˆ๋ฌธ์— ๋‹ตํ•˜๋Š” ๊ฒƒ๊ณผ ์œ ์‚ฌํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ๊ฐ„๋‹จํ•œ ๋‹จ์ผ ๋‹จ๊ณ„ ํšŒ์ƒ ๊ณผ์ •์ž…๋‹ˆ๋‹ค. Advanced RAG๋Š” ๋จผ์ € ๊ฒ€์ƒ‰ ์ฟผ๋ฆฌ๋ฅผ ํ‘œํ˜„ํ•˜๋Š” ๊ฐ€์žฅ ์ข‹์€ ๋ฐฉ๋ฒ•์„ ๊ณ ๋ คํ•˜๊ธฐ ์œ„ํ•ด ์ž ์‹œ ๋ฉˆ์ถ”๊ณ (์ฟผ๋ฆฌ ์žฌ์ž‘์„ฑ), ์—ฌ๋Ÿฌ ์†Œ์Šค๋ฅผ ์ˆ˜์ง‘ํ•œ ํ›„ ๊ฐ€์žฅ ์œ ๋งํ•œ ๊ฒƒ์„ ์‹๋ณ„ํ•˜๊ธฐ ์œ„ํ•ด ๋น ๋ฅด๊ฒŒ ํ›‘์–ด๋ณธ ๋‹ค์Œ ์‹ฌ์ธต์ ์œผ๋กœ ์ฝ๋Š”(์žฌ์ˆœ์œ„ํ™”) ๋” ๋ถ€์ง€๋Ÿฐํ•œ ํ•™์ƒ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค. ํ”„๋กœ์„ธ์Šค๋Š” ์—ฌ์ „ํžˆ ์„ ํ˜•์ ์ด์ง€๋งŒ ํ’ˆ์งˆ ๊ด€๋ฆฌ๋ฅผ ์œ„ํ•œ ๋‹จ๊ณ„๋ฅผ ํฌํ•จํ•ฉ๋‹ˆ๋‹ค. Modular RAG๋Š” ๋ณต์žกํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ์—ฐ๊ตฌ์›๊ณผ ์œ ์‚ฌํ•œ ์ค‘์š”ํ•œ ์ธ์ง€์  ๋„์•ฝ์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค. ๊ทธ๋“ค์€ ์ดˆ๊ธฐ ๊ด‘๋ฒ”์œ„ํ•œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๊ณ , ๊ทธ ๊ฒฐ๊ณผ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋” ๋ชฉํ‘œํ™”๋œ ํ›„์† ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๊ณ (๋‹ค๋‹จ๊ณ„ ๊ฒ€์ƒ‰), ๋‹ค๋ฅธ ์œ ํ˜•์˜ ์†Œ์Šค๋ฅผ ์ฐธ์กฐํ•˜๊ณ (๋ชจ๋“ˆํ˜• ๊ฒ€์ƒ‰), ์ด๋ฏธ ๋ฐฐ์šด ๊ฒƒ์„ ๊ธฐ์–ตํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค(๋ฉ”๋ชจ๋ฆฌ). ์ด ๊ถค์ ์€ ์ •๋ณด๋ฅผ ๊ฐ€์ ธ์˜ค๋Š” ๊ฐ„๋‹จํ•œ ๋„๊ตฌ์—์„œ ์ •๋ณด๋ฅผ ์ฐพ๊ณ , ํ‰๊ฐ€ํ•˜๊ณ , ์ข…ํ•ฉํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ์ „๋žต์„ ์„ธ์šฐ๋Š” ๋” ์ •๊ตํ•œ ์‹œ์Šคํ…œ์œผ๋กœ์˜ ๋ช…ํ™•ํ•œ ์ „ํ™˜์„ ๋ณด์—ฌ์ฃผ๋ฉฐ, ๊ณ ๋„๋กœ ์ž์œจ์ ์ธ Agentic RAG ์‹œ์Šคํ…œ์˜ ๊ฐœ๋…์  ํ† ๋Œ€๋ฅผ ๋งˆ๋ จํ•ฉ๋‹ˆ๋‹ค.

์ „๋žต์  ๊ตฌํ˜„: RAG ๋Œ€ ๋ฏธ์„ธ ์กฐ์ •(Fine-Tuning)

ํŠน์ • ๋น„์ฆˆ๋‹ˆ์Šค ์š”๊ตฌ์— ๋งž๊ฒŒ ๋ฒ”์šฉ LLM์„ ์กฐ์ •ํ•˜๋ ค ํ•  ๋•Œ, ์กฐ์ง์€ ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๋งž์ถคํ™” ๊ธฐ์ˆ ์ธ ๊ฒ€์ƒ‰ ์ฆ๊ฐ• ์ƒ์„ฑ(RAG)๊ณผ ๋ฏธ์„ธ ์กฐ์ • ์‚ฌ์ด์—์„œ ์ค‘์š”ํ•œ ์ „๋žต์  ์„ ํƒ์— ์ง๋ฉดํ•ฉ๋‹ˆ๋‹ค. ๋‘˜ ๋‹ค ๋ชจ๋ธ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ  ๋„๋ฉ”์ธ ํŠน์ • ์‘๋‹ต์„ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•˜์ง€๋งŒ, ๊ทผ๋ณธ์ ์œผ๋กœ ๋‹ค๋ฅธ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํ†ตํ•ด ์ž‘๋™ํ•˜๋ฉฐ ๋น„์šฉ, ๋ณต์žก์„ฑ, ๋ฐ์ดํ„ฐ ํ”„๋ผ์ด๋ฒ„์‹œ ๋ฐ ์ง€์‹ ๊ด€๋ฆฌ ์ธก๋ฉด์—์„œ ๋šœ๋ ทํ•œ ์žฅ๋‹จ์ ์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ฐจ์ด์ ์„ ์ดํ•ดํ•˜๋Š” ๊ฒƒ์€ ์ •๋ณด์— ์ž…๊ฐํ•œ ์•„ํ‚คํ…์ฒ˜ ๊ฒฐ์ •์„ ๋‚ด๋ฆฌ๋Š” ๋ฐ ํ•„์ˆ˜์ ์ž…๋‹ˆ๋‹ค.

๋น„๊ต ํ”„๋ ˆ์ž„์›Œํฌ

RAG์™€ ๋ฏธ์„ธ ์กฐ์ • ๊ฐ„์˜ ์„ ํƒ์€ ๊ฐ„๋‹จํ•œ ๋น„์œ ๋ฅผ ํ†ตํ•ด ์ดํ•ดํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค: RAG๋Š” ์ผ๋ฐ˜ ์š”๋ฆฌ์‚ฌ์—๊ฒŒ ํŠน์ • ์‹์‚ฌ๋ฅผ ์œ„ํ•ด ์‚ฌ์šฉํ•  ์ƒˆ๋กœ์šด ์ „๋ฌธ ์š”๋ฆฌ์ฑ…์„ ์ฃผ๋Š” ๊ฒƒ๊ณผ ๊ฐ™๊ณ , ๋ฏธ์„ธ ์กฐ์ •์€ ๊ทธ ์š”๋ฆฌ์‚ฌ๋ฅผ ํŠน์ • ์š”๋ฆฌ์˜ ์ „๋ฌธ๊ฐ€๊ฐ€ ๋˜๋„๋ก ์ง‘์ค‘ ์š”๋ฆฌ ๊ณผ์ •์— ๋ณด๋‚ด๋Š” ๊ฒƒ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.

  • ํ•ต์‹ฌ ๋ฉ”์ปค๋‹ˆ์ฆ˜: RAG๋Š” ์ถ”๋ก  ์‹œ์ ์— ์™ธ๋ถ€์ ์œผ๋กœ LLM์˜ ์ง€์‹์„ ์ฆ๊ฐ•์‹œํ‚ต๋‹ˆ๋‹ค. ํ”„๋กฌํ”„ํŠธ ๋‚ด์—์„œ ๊ด€๋ จ ์ •๋ณด๋ฅผ ์ปจํ…์ŠคํŠธ๋กœ ์ œ๊ณตํ•˜์ง€๋งŒ, LLM์˜ ๊ธฐ๋ณธ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๋ณ€๊ฒฝํ•˜์ง€๋Š” ์•Š์Šต๋‹ˆ๋‹ค. ๋ฐ˜๋ฉด, ๋ฏธ์„ธ ์กฐ์ •์€ ์„ ๋ณ„๋œ ๋„๋ฉ”์ธ ํŠน์ • ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•œ ํ›ˆ๋ จ ๊ณผ์ •์„ ๊ณ„์†ํ•˜์—ฌ LLM์˜ ๋‚ด๋ถ€ ์ง€์‹์„ ์ง์ ‘ ์ˆ˜์ •ํ•ฉ๋‹ˆ๋‹ค. ์ด ๊ณผ์ •์€ ๋ชจ๋ธ์˜ ๋‚ด๋ถ€ ๊ฐ€์ค‘์น˜๋ฅผ ์กฐ์ •ํ•˜์—ฌ ํšจ๊ณผ์ ์œผ๋กœ ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ์ด๋‚˜ ๋ฐฉ์–ธ์„ ๊ฐ€๋ฅด์นฉ๋‹ˆ๋‹ค.
  • ์ง€์‹ ํ†ตํ•ฉ: RAG๋Š” ๋™์ ์ด๊ฑฐ๋‚˜, ๋ณ€๋™์„ฑ์ด ํฌ๊ฑฐ๋‚˜, ๋น ๋ฅด๊ฒŒ ๋ณ€ํ•˜๋Š” ์ •๋ณด๋ฅผ ํ†ตํ•ฉํ•˜๋Š” ๋ฐ ๋งค์šฐ ์ ํ•ฉํ•ฉ๋‹ˆ๋‹ค. ์‹œ์Šคํ…œ์˜ ์ง€์‹์„ ์—…๋ฐ์ดํŠธํ•˜๋ ค๋ฉด ์™ธ๋ถ€ ์ง€์‹ ๋ฒ ์ด์Šค์˜ ๋ฌธ์„œ๋ฅผ ์—…๋ฐ์ดํŠธํ•˜๊ธฐ๋งŒ ํ•˜๋ฉด ๋˜๋Š”๋ฐ, ์ด๋Š” ๋น„๊ต์  ๊ฐ„๋‹จํ•˜๊ณ  ๋น ๋ฅธ ๊ณผ์ •์ž…๋‹ˆ๋‹ค. ๋ฏธ์„ธ ์กฐ์ •์€ ํŠน์ • ์Šคํƒ€์ผ, ํ†ค ๋˜๋Š” ์˜๋ฃŒ๋‚˜ ๋ฒ•๋ฅ ๊ณผ ๊ฐ™์€ ์ „๋ฌธ ๋ถ„์•ผ์˜ ๋ฏธ๋ฌ˜ํ•œ ์–ดํœ˜์™€ ๊ฐ™์€ ์•”๋ฌต์ ์ธ ์ง€์‹์„ ๋ชจ๋ธ์— ๊ฐ€๋ฅด์น˜๋Š” ๋ฐ ๋” ์ข‹์Šต๋‹ˆ๋‹ค. ์ด ์ง€์‹์€ ๋ชจ๋ธ์— ๋‚ด์žฅ๋˜์ง€๋งŒ ํ›ˆ๋ จ์ด ์™„๋ฃŒ๋˜๋ฉด ์ •์ ์ด ๋ฉ๋‹ˆ๋‹ค.
  • ๋ฐ์ดํ„ฐ ํ”„๋ผ์ด๋ฒ„์‹œ ๋ฐ ๋ณด์•ˆ: RAG๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ๋ฏผ๊ฐํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐ ๋” ์•ˆ์ „ํ•œ ์ž์„ธ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ๋…์  ์ •๋ณด๋Š” ์•ˆ์ „ํ•œ ์˜จํ”„๋ ˆ๋ฏธ์Šค ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์— ๋ณด๊ด€ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ํŠน์ • ์ฟผ๋ฆฌ์— ๋Œ€ํ•ด์„œ๋งŒ ๋Ÿฐํƒ€์ž„์— ์•ก์„ธ์Šค๋ฉ๋‹ˆ๋‹ค. ๋ฐ์ดํ„ฐ๋Š” ์ปจํ…์ŠคํŠธ๋กœ ์‚ฌ์šฉ๋˜์ง€๋งŒ ๋ชจ๋ธ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ์— ํก์ˆ˜๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ๋ฐ˜๋ฉด, ๋ฏธ์„ธ ์กฐ์ •์€ ํ›ˆ๋ จ ๋‹จ๊ณ„์—์„œ ์ด ๋…์  ๋ฐ์ดํ„ฐ์— ๋ชจ๋ธ์„ ๋…ธ์ถœ์‹œ์ผœ์•ผ ํ•˜๋ฏ€๋กœ ๋ฐ์ดํ„ฐ์˜ ๋ฏผ๊ฐ๋„์™€ ๋ฐฐํฌ ํ™˜๊ฒฝ์— ๋”ฐ๋ผ ๋ณด์•ˆ ๋˜๋Š” ํ”„๋ผ์ด๋ฒ„์‹œ ์œ„ํ—˜์„ ์ดˆ๋ž˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  • ๋น„์šฉ, ์‹œ๊ฐ„ ๋ฐ ๋ฆฌ์†Œ์Šค: RAG๋Š” ์ฃผ๋กœ ์ฝ”๋”ฉ ๋ฐ ๋ฐ์ดํ„ฐ ์ธํ”„๋ผ ๊ธฐ์ˆ ์„ ํ•„์š”๋กœ ํ•˜์—ฌ ์ง„์ž… ์žฅ๋ฒฝ์ด ๋‚ฎ์•„ ์ดˆ๊ธฐ ๊ตฌํ˜„์ด ๋œ ๋ณต์žกํ•˜๊ณ  ๋น„์šฉ์ด ์ €๋ ดํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋Ÿฐํƒ€์ž„์— ์ฒ˜๋ฆฌ๋˜๋Š” ๋ชจ๋“  ์ฟผ๋ฆฌ์— ๋Œ€ํ•ด ์ถ”๊ฐ€์ ์ธ ๊ณ„์‚ฐ ์˜ค๋ฒ„ํ—ค๋“œ์™€ ์ง€์—ฐ ์‹œ๊ฐ„์„ ๋ฐœ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค. ๋ฏธ์„ธ ์กฐ์ •์€ ์ปดํ“จํŒ… ์ธํ”„๋ผ(GPU ํด๋Ÿฌ์Šคํ„ฐ), ์‹œ๊ฐ„ ๋ฐ ๋”ฅ๋Ÿฌ๋‹๊ณผ NLP์™€ ๊ฐ™์€ ๋ถ„์•ผ์˜ ์ „๋ฌธ AI/ML ์ „๋ฌธ ์ง€์‹์— ์ƒ๋‹นํ•œ ์ดˆ๊ธฐ ํˆฌ์ž๋ฅผ ์š”๊ตฌํ•˜๋Š” ๋ฆฌ์†Œ์Šค ์ง‘์•ฝ์ ์ธ ์ž‘์—…์ž…๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ชจ๋ธ์ด ๋ฏธ์„ธ ์กฐ์ •๋˜๋ฉด ๋Ÿฐํƒ€์ž„ ์„ฑ๋Šฅ์ด ํšจ์œจ์ ์ด๋ฉฐ ์ฟผ๋ฆฌ๋‹น ์ถ”๊ฐ€ ์˜ค๋ฒ„ํ—ค๋“œ๊ฐ€ ํ•„์š”ํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
  • ํ™˜๊ฐ ํ˜„์ƒ ๋ฐ ๊ฒ€์ฆ ๊ฐ€๋Šฅ์„ฑ: RAG๋Š” LLM์˜ ์‘๋‹ต์„ ๊ฒ€์ƒ‰๋œ ์‚ฌ์‹ค์  ์ฆ๊ฑฐ์— ๊ธฐ๋ฐ˜์„ ๋‘๊ธฐ ๋•Œ๋ฌธ์— ํ™˜๊ฐ ํ˜„์ƒ์„ ์™„ํ™”ํ•˜๋Š” ๊ฐ•๋ ฅํ•œ ๋„๊ตฌ์ž…๋‹ˆ๋‹ค. ๊ฒฐ์ •์ ์œผ๋กœ, ์‹œ์Šคํ…œ์ด ์ถœ์ฒ˜๋ฅผ ์ธ์šฉํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•˜์—ฌ ์ถœ๋ ฅ์„ ํˆฌ๋ช…ํ•˜๊ฒŒ ๋งŒ๋“ค๊ณ  ์ตœ์ข… ์‚ฌ์šฉ์ž๊ฐ€ ๊ฒ€์ฆํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ฉ๋‹ˆ๋‹ค. ๋ฏธ์„ธ ์กฐ์ •์€ ์ „๋ฌธ ๋„๋ฉ”์ธ ๋‚ด์˜ ์ฃผ์ œ์— ๋Œ€ํ•œ ํ™˜๊ฐ ํ˜„์ƒ์„ ์ค„์ผ ์ˆ˜ ์žˆ์ง€๋งŒ, ์ต์ˆ™ํ•˜์ง€ ์•Š์€ ์ฟผ๋ฆฌ์— ๋Œ€ํ•ด์„œ๋Š” ์—ฌ์ „ํžˆ ์˜ค๋ฅ˜๋ฅผ ๋ฒ”ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ์†Œ์Šค ์ธ์šฉ์„ ์ œ๊ณตํ•˜๋Š” ๋‚ด์žฌ๋œ ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ์—†์Šต๋‹ˆ๋‹ค.
๊ธฐ์ค€๊ฒ€์ƒ‰ ์ฆ๊ฐ• ์ƒ์„ฑ(RAG)๋ฏธ์„ธ ์กฐ์ •(Fine-Tuning)
์ฃผ์š” ๋ชฉํ‘œ“์‘๋‹ต ์ƒ์„ฑ ์‹œ์ ์— LLM์— ์ตœ์‹ ์˜, ์‚ฌ์‹ค์ ์ด๊ฑฐ๋‚˜ ๋…์ ์ ์ธ ์ง€์‹์„ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ.”“LLM์˜ ํ•ต์‹ฌ ํ–‰๋™, ์Šคํƒ€์ผ, ํ†ค ๋˜๋Š” ์ „๋ฌธ ๋„๋ฉ”์ธ ์–ธ์–ด์— ๋Œ€ํ•œ ์ดํ•ด๋ฅผ ์กฐ์ •ํ•˜๋Š” ๊ฒƒ.”
์ง€์‹ ๋ฉ”์ปค๋‹ˆ์ฆ˜์™ธ๋ถ€ ๋ฐ ๋น„-ํŒŒ๋ผ๋ฏธํ„ฐ. ์ง€์‹์€ ์™ธ๋ถ€ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์—์„œ ๊ฒ€์ƒ‰๋˜์–ด ๋Ÿฐํƒ€์ž„์— ํ”„๋กฌํ”„ํŠธ๋กœ ์ œ๊ณต๋ฉ๋‹ˆ๋‹ค. ๋ชจ๋ธ์˜ ๊ฐ€์ค‘์น˜๋Š” ๋ณ€๊ฒฝ๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ๋‚ด๋ถ€ ๋ฐ ํŒŒ๋ผ๋ฏธํ„ฐ. ์ง€์‹์€ ๋„๋ฉ”์ธ ํŠน์ • ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•œ ์ง€์†์ ์ธ ํ›ˆ๋ จ์„ ํ†ตํ•ด ๋ชจ๋ธ์˜ ๊ฐ€์ค‘์น˜์— ํ†ตํ•ฉ๋ฉ๋‹ˆ๋‹ค.
๋ฐ์ดํ„ฐ ์‹ ์„ ๋„๋™์  ๋ฐ์ดํ„ฐ์— ํƒ์›”ํ•จ. ์™ธ๋ถ€ ๋ฐ์ดํ„ฐ ์†Œ์Šค๋ฅผ ์ˆ˜์ •ํ•˜๊ธฐ๋งŒ ํ•˜๋ฉด ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ง€์‹์„ ์—…๋ฐ์ดํŠธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ •์ . ๋ชจ๋ธ์˜ ์ง€์‹์€ ํ›ˆ๋ จ ์‹œ์ ์— ๊ณ ์ •๋ฉ๋‹ˆ๋‹ค. ์ƒˆ๋กœ์šด ์ •๋ณด๋ฅผ ํ†ตํ•ฉํ•˜๋ ค๋ฉด ์žฌํ›ˆ๋ จ์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.
๋น„์šฉ ํ”„๋กœํ•„์ดˆ๊ธฐ ๋น„์šฉ ๋ฐ ๋ณต์žก์„ฑ์ด ๋‚ฎ์Œ. ๊ฐ ์ฟผ๋ฆฌ์— ๋Œ€ํ•œ ์ถ”๊ฐ€ ๊ฒ€์ƒ‰ ๋‹จ๊ณ„๋กœ ์ธํ•ด ๋Ÿฐํƒ€์ž„ ๋น„์šฉ์ด ๋†’์Œ. “๋ฐ์ดํ„ฐ ํ๋ ˆ์ด์…˜, ์ปดํ“จํŒ… ๋ฆฌ์†Œ์Šค(GPU) ๋ฐ ์ „๋ฌธ ๊ธฐ์ˆ ์— ๋Œ€ํ•œ ๋†’์€ ์ดˆ๊ธฐ ๋น„์šฉ. ์ถ”๊ฐ€ ์˜ค๋ฒ„ํ—ค๋“œ ์—†๋Š” ํšจ์œจ์ ์ธ ๋Ÿฐํƒ€์ž„.
๋ฐ์ดํ„ฐ ํ”„๋ผ์ด๋ฒ„์‹œ“๋†’์Œ. ๋ฏผ๊ฐํ•œ ๋ฐ์ดํ„ฐ๋Š” ์•ˆ์ „ํ•˜๊ณ  ๊ฒฉ๋ฆฌ๋œ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์— ๋‚จ์•„ ์žˆ์œผ๋ฉฐ ๋ชจ๋ธ์— ํก์ˆ˜๋˜์ง€ ์•Š์Œ. “๋‚ฎ์Œ. ํ›ˆ๋ จ ๊ณผ์ •์—์„œ ๋…์  ๋ฐ์ดํ„ฐ์— ๋ชจ๋ธ์„ ๋…ธ์ถœ์‹œ์ผœ์•ผ ํ•˜๋ฏ€๋กœ ๋ณด์•ˆ ๋ฌธ์ œ๊ฐ€ ๋  ์ˆ˜ ์žˆ์Œ.
๊ฒ€์ฆ ๊ฐ€๋Šฅ์„ฑ“๋†’์Œ. ์ถœ์ฒ˜ ์ธ์šฉ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜์—ฌ ์‚ฌ์šฉ์ž๊ฐ€ ์ƒ์„ฑ๋œ ์‘๋‹ต์˜ ์‚ฌ์‹ค์  ๊ทผ๊ฑฐ๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•จ. ๋‚ฎ์Œ. ์ƒ์„ฑ๋œ ์ •๋ณด๋ฅผ ํŠน์ • ์†Œ์Šค ๋ฌธ์„œ๋กœ ๋‹ค์‹œ ์ถ”์ ํ•˜๋Š” ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋ณธ์งˆ์ ์œผ๋กœ ์ œ๊ณตํ•˜์ง€ ์•Š์Œ.
์ฃผ์š” ์•ฝ์ ๊ฐ ์ฟผ๋ฆฌ์— ์ง€์—ฐ ์‹œ๊ฐ„์„ ์ถ”๊ฐ€ํ•จ. ์‘๋‹ต์˜ ํ’ˆ์งˆ์€ ๊ฒ€์ƒ‰ ํ’ˆ์งˆ์— ํฌ๊ฒŒ ์˜์กดํ•จ.
ํ•„์š” ๊ธฐ์ˆ “๋ฐ์ดํ„ฐ ์—”์ง€๋‹ˆ์–ด๋ง, ๋ฐ์ดํ„ฐ ์•„ํ‚คํ…์ฒ˜ ๋ฐ ์ฝ”๋”ฉ ๊ธฐ์ˆ ์ด ์ฃผ๊ฐ€ ๋จ.

Export to Sheets

ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์•„ํ‚คํ…์ฒ˜: ๋‘ ์„ธ๊ณ„์˜ ์ตœ๊ณ  ๊ฒฐํ•ฉ

RAG์™€ ๋ฏธ์„ธ ์กฐ์ •์ด ์ƒํ˜ธ ๋ฐฐํƒ€์ ์ธ ๊ฒƒ์ด ์•„๋‹ˆ๋ผ๋Š” ์ ์„ ์ธ์‹ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ์‚ฌ์‹ค, ์ด๋“ค์€ ๊ฐ•๋ ฅํ•˜๊ฒŒ ๋ณด์™„์ ์ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์•„ํ‚คํ…์ฒ˜๋Š” LLM ๋งž์ถคํ™”์— ๋Œ€ํ•œ ์ตœ์ฒจ๋‹จ ์ ‘๊ทผ ๋ฐฉ์‹์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค. ์ด ๋ชจ๋ธ์—์„œ๋Š” LLM์ด ๋จผ์ € ๋„๋ฉ”์ธ์˜ ํŠน์ • ์–ดํœ˜, ํ†ค ๋ฐ ์•”๋ฌต์  ์ถ”๋ก  ํŒจํ„ด์„ ๋งˆ์Šคํ„ฐํ•˜๋„๋ก

๋ฏธ์„ธ ์กฐ์ •๋ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฐ ๋‹ค์Œ ์ด ํŠนํ™”๋œ ๋ชจ๋ธ์€ ์™ธ๋ถ€ ์ง€์‹ ๋ฒ ์ด์Šค์—์„œ ์‹ค์‹œ๊ฐ„ ์‚ฌ์‹ค ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋Š”

RAG ํ”„๋ ˆ์ž„์›Œํฌ ๋‚ด์— ๋ฐฐํฌ๋ฉ๋‹ˆ๋‹ค. ์ด ์ ‘๊ทผ ๋ฐฉ์‹์€ “๋ฐฉ๋ฒ•”(๋ฏธ์„ธ ์กฐ์ •์—์„œ ์–ป์€ ํŠนํ™”๋œ ์Šคํƒ€์ผ๊ณผ ์ดํ•ด)๊ณผ “๋ฌด์—‡”(RAG์—์„œ ์–ป์€ ์ตœ์‹  ์‚ฌ์‹ค)์„ ๊ฒฐํ•ฉํ•˜์—ฌ, ์‚ฌ์‹ค์ ์œผ๋กœ ์ •ํ™•ํ•˜๊ณ  ์ตœ์‹ ์ผ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋ฌธ์ฒด์ ์œผ๋กœ ์ ์ ˆํ•˜๊ณ  ๋ฌธ๋งฅ์ ์œผ๋กœ ๋ฏธ๋ฌ˜ํ•œ ์‘๋‹ต์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.

RAG์˜ ์ตœ์ „์„ : ๊ณ ๊ธ‰ ๊ธฐ์ˆ  ๋ฐ ์•„ํ‚คํ…์ฒ˜

RAG์˜ ์ฑ„ํƒ์ด ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ๊ทธ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ์—ฐ๊ตฌ๋„ ์ฆ๊ฐ€ํ–ˆ์Šต๋‹ˆ๋‹ค. RAG์˜ ์ตœ์ „์„ ์€ ๋‹จ์ˆœํ•˜๊ณ  ์„ ํ˜•์ ์ธ ํŒŒ์ดํ”„๋ผ์ธ์—์„œ ๋ฒ—์–ด๋‚˜ ๋” ๋™์ ์ด๊ณ , ์„ฑ์ฐฐ์ ์ด๋ฉฐ, ์ง€๋Šฅ์ ์ธ ์‹œ์Šคํ…œ์œผ๋กœ์˜ ์›€์ง์ž„์œผ๋กœ ํŠน์ง•์ง€์–ด์ง‘๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ณ ๊ธ‰ ๊ธฐ์ˆ ์€ ์ฟผ๋ฆฌ๋ฅผ ์ดํ•ดํ•˜๋Š” ๋ฐฉ๋ฒ•์—์„œ๋ถ€ํ„ฐ ์ •๋ณด๋ฅผ ๊ฒ€์ƒ‰, ํ‰๊ฐ€ ๋ฐ ์ข…ํ•ฉํ•˜๋Š” ๋ฐฉ๋ฒ•์— ์ด๋ฅด๊ธฐ๊นŒ์ง€ RAG ํ”„๋กœ์„ธ์Šค์˜ ๋ชจ๋“  ๋‹จ๊ณ„๋ฅผ ๊ฐœ์„ ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•ฉ๋‹ˆ๋‹ค.

๊ฒ€์ƒ‰ ๋ฐ ์ˆœ์œ„ ์ง€์ • ๋‹จ๊ณ„ ๊ฐ•ํ™”

๊ฒ€์ƒ‰ ํ’ˆ์งˆ์€ RAG ์„ฑ๊ณต์˜ ์ฃผ์š” ๊ฒฐ์ • ์š”์ธ์ž…๋‹ˆ๋‹ค. ๊ณ ๊ธ‰ ๊ธฐ์ˆ ์€ ์ƒ์„ฑ๊ธฐ์— ์ œ๊ณต๋˜๋Š” ์ปจํ…์ŠคํŠธ๊ฐ€ ๊ฐ€๋Šฅํ•œ ํ•œ ์ •ํ™•ํ•˜๊ณ  ๊ด€๋ จ์„ฑ์ด ๋†’๋„๋ก ๋ณด์žฅํ•˜๋Š” ๋ฐ ์ค‘์ ์„ ๋‘ก๋‹ˆ๋‹ค.

  • ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ๊ฒ€์ƒ‰: ์ด ๊ธฐ์ˆ ์€ ์—ฌ๋Ÿฌ ์ ‘๊ทผ ๋ฐฉ์‹์˜ ๊ฐ•์ ์„ ๊ฒฐํ•ฉํ•˜์—ฌ ๋‹จ์ผ ๊ฒ€์ƒ‰ ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜๋Š” ๋‹จ์ ์„ ํ•ด๊ฒฐํ•ฉ๋‹ˆ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ํŠน์ • ์šฉ์–ด์™€ ๊ฐœ์ฒด๋ฅผ ์ผ์น˜์‹œํ‚ค๋Š” ๋ฐ ํƒ์›”ํ•œ ์ „ํ†ต์ ์ธ ํ‚ค์›Œ๋“œ ๊ธฐ๋ฐ˜ ๊ฒ€์ƒ‰(ํฌ์†Œ ๊ฒ€์ƒ‰, ์˜ˆ: BM25)๊ณผ ๊ฐœ๋…์  ์˜๋ฏธ์™€ ์‚ฌ์šฉ์ž ์˜๋„๋ฅผ ์ดํ•ดํ•˜๋Š” ๋ฐ ํƒ์›”ํ•œ ํ˜„๋Œ€์ ์ธ ์˜๋ฏธ ๋ฒกํ„ฐ ๊ฒ€์ƒ‰(๋ฐ€์ง‘ ๊ฒ€์ƒ‰)์„ ์œตํ•ฉํ•ฉ๋‹ˆ๋‹ค. ์ด ์กฐํ•ฉ์€ ์–ดํœ˜์  ๊ด€๋ จ์„ฑ๊ณผ ์˜๋ฏธ์  ๊ด€๋ จ์„ฑ์„ ๋ชจ๋‘ ํฌ์ฐฉํ•˜๋Š” ๋” ๊ฐ•๋ ฅํ•˜๊ณ  ํฌ๊ด„์ ์ธ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๋กœ ์ด์–ด์ง‘๋‹ˆ๋‹ค.
  • ์žฌ์ˆœ์œ„ ๋ชจ๋ธ: ์žฌ์ˆœ์œ„ํ™”๋Š” ์ดˆ๊ธฐ ๊ฒ€์ƒ‰ ํ›„ ๋‘ ๋ฒˆ์งธ, ๋” ์„ธ์‹ฌํ•œ ํ‰๊ฐ€ ๋‹จ๊ณ„๋ฅผ ๋„์ž…ํ•ฉ๋‹ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํŒจ์Šค ๊ฒ€์ƒ‰๊ธฐ๋Š” ์†๋„์™€ ์žฌํ˜„์œจ(๊ด‘๋ฒ”์œ„ํ•œ ์ž ์žฌ์  ๊ด€๋ จ ๋ฌธ์„œ ์ฐพ๊ธฐ)์— ์ตœ์ ํ™”๋˜์–ด ์žˆ์ง€๋งŒ, ์žฌ์ˆœ์œ„ ๋ชจ๋ธ์€ ์ •๋ฐ€๋„์— ์ตœ์ ํ™”๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. BERT ๊ธฐ๋ฐ˜ ๊ต์ฐจ ์ธ์ฝ”๋”์™€ ๊ฐ™์ด ๋” ๊ฐ•๋ ฅํ•˜์ง€๋งŒ ๊ณ„์‚ฐ ์ง‘์•ฝ์ ์ธ ๋ชจ๋ธ์ด ๊ฒ€์ƒ‰๊ธฐ์—์„œ ์ƒ์œ„ ํ›„๋ณด๋ฅผ ๊ฐ€์ ธ์™€ ์ฟผ๋ฆฌ์™€ ์‹ฌ์ธต์ ์ธ ์Œ๋ณ„ ๋น„๊ต๋ฅผ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฐ ๋‹ค์Œ ์ด๋Ÿฌํ•œ ํ›„๋ณด์˜ ์ˆœ์„œ๋ฅผ ๋‹ค์‹œ ์ •๋ ฌํ•˜์—ฌ ๊ฐ€์žฅ ์˜๋ฏธ์ ์œผ๋กœ ๊ด€๋ จ๋œ ๋ฌธ์„œ๋ฅผ ๋งจ ์œ„๋กœ ์˜ฌ๋ฆฝ๋‹ˆ๋‹ค. ์ด๋Š” ๋…ธ์ด์ฆˆ๋ฅผ ๊ฑธ๋Ÿฌ๋‚ด๊ณ  ์ƒ์„ฑ๊ธฐ๋กœ ์ „์†ก๋˜๋Š” ์ปจํ…์ŠคํŠธ์˜ ํ’ˆ์งˆ์„ ๊ทน๋Œ€ํ™”ํ•˜๋Š” ์ค‘์š”ํ•œ ๋‹จ๊ณ„๋กœ, ์•ฝ๊ฐ„์˜ ์ง€์—ฐ ์‹œ๊ฐ„ ์ฆ๊ฐ€๋ฅผ ๋Œ€๊ฐ€๋กœ ์ตœ์ข… ์ •ํ™•๋„๋ฅผ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค.

๋ฐ˜๋ณต์ ์ด๊ณ  ์„ฑ์ฐฐ์ ์ธ ์•„ํ‚คํ…์ฒ˜

RAG์˜ ์ฃผ์š” ํ˜์‹ ์€ ์‹œ์Šคํ…œ์ด ์ž์ฒด ํ”„๋กœ์„ธ์Šค๋ฅผ ํ‰๊ฐ€ํ•˜๊ณ  ์ˆ˜์ •ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ์ž๊ธฐ ์„ฑ์ฐฐ๊ณผ ๋ฐ˜๋ณต์˜ ๋„์ž…์ž…๋‹ˆ๋‹ค.

  • Self-RAG (์ž๊ธฐ ์„ฑ์ฐฐ RAG): ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๋‹จ์ผ LLM์— ์ž๊ธฐ ์„ฑ์ฐฐ์„ ํ†ตํ•ด ์ž์ฒด ๊ฒ€์ƒ‰ ๋ฐ ์ƒ์„ฑ ํ”„๋กœ์„ธ์Šค๋ฅผ ์ œ์–ดํ•  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ์„ ๋ถ€์—ฌํ•ฉ๋‹ˆ๋‹ค. ํŠน์ˆ˜ “์„ฑ์ฐฐ ํ† ํฐ”์„ ์‚ฌ์šฉํ•˜์—ฌ (1) ์ฃผ์–ด์ง„ ์ฟผ๋ฆฌ์— ๋Œ€ํ•ด ๊ฒ€์ƒ‰์ด ํ•„์š”ํ•œ์ง€ ์—ฌ๋ถ€, (2) ๊ฒ€์ƒ‰๋œ ๊ตฌ์ ˆ์˜ ๊ด€๋ จ์„ฑ ํ‰๊ฐ€, (3) ์ƒ์„ฑ๋œ ์ถœ๋ ฅ์ด ์ œ๊ณต๋œ ์ฆ๊ฑฐ์— ์˜ํ•ด ์‚ฌ์‹ค์ ์œผ๋กœ ๋’ท๋ฐ›์นจ๋˜๋Š”์ง€ ๋น„ํ‰ํ•˜๋Š” ๋“ฑ ๋ช‡ ๊ฐ€์ง€ ์ฃผ์š” ๊ฒฐ์ •์„ ์˜จ๋””๋งจ๋“œ๋กœ ๋‚ด๋ฆฝ๋‹ˆ๋‹ค. ์ด ์ ์‘ํ˜• ์ ‘๊ทผ ๋ฐฉ์‹์€ ๋ชจ๋ธ์˜ ์ถ”๋ก ์„ ๋” ํˆฌ๋ช…ํ•˜๊ฒŒ ๋งŒ๋“ค๊ณ  ํŠน์ • ์ž‘์—… ์š”๊ตฌ ์‚ฌํ•ญ์— ๋งž๊ฒŒ ๋™์ž‘์„ ์กฐ์ •ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ฉ๋‹ˆ๋‹ค.
  • Corrective RAG (CRAG): ์ด ๊ธฐ์ˆ ์€ ํŠนํžˆ ์ดˆ๊ธฐ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๊ฐ€ ์ข‹์ง€ ์•Š์„ ๋•Œ RAG์˜ ๊ฒฌ๊ณ ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์„ค๊ณ„๋˜์—ˆ์Šต๋‹ˆ๋‹ค. CRAG๋Š” ๊ฒ€์ƒ‰๋œ ๋ฌธ์„œ์˜ ํ’ˆ์งˆ์„ ์ฟผ๋ฆฌ์— ๋Œ€ํ•ด ํ‰๊ฐ€ํ•˜๋Š” ๊ฒฝ๋Ÿ‰ “๊ฒ€์ƒ‰ ํ‰๊ฐ€๊ธฐ”๋ฅผ ๋„์ž…ํ•ฉ๋‹ˆ๋‹ค. ๋ฌธ์„œ๊ฐ€ ๊ด€๋ จ ์—†๊ฑฐ๋‚˜ ์ž˜๋ชป๋œ ๊ฒƒ์œผ๋กœ ๊ฐ„์ฃผ๋˜๋ฉด CRAG๋Š” ์ˆ˜์ • ์กฐ์น˜๋ฅผ ํŠธ๋ฆฌ๊ฑฐํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ๊ฒฐํ•จ ์žˆ๋Š” ๋ฌธ์„œ๋ฅผ ๋ฒ„๋ฆฌ๊ณ  ๋” ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ์ •๋ณด๋ฅผ ์ฐพ๊ธฐ ์œ„ํ•ด ์›น ๊ฒ€์ƒ‰์„ ์‹œ์ž‘ํ•˜๊ฑฐ๋‚˜, ์ •ํ™•ํ•˜์ง€๋งŒ ๊ด€๋ จ ์—†๋Š” ๋…ธ์ด์ฆˆ๊ฐ€ ํฌํ•จ๋œ ๋ฌธ์„œ๋ฅผ ๋ถ„ํ•ดํ•˜๊ณ  ์ •์ œํ•˜๋Š” ๊ฒƒ์„ ํฌํ•จํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ์ƒ์„ฑ๊ธฐ๊ฐ€ ์ž˜๋ชป๋œ ์ปจํ…์ŠคํŠธ์— ์˜ํ•ด ์˜ค๋„๋˜๋Š” ๊ฒƒ์„ ๋ฐฉ์ง€ํ•ฉ๋‹ˆ๋‹ค.
  • Adaptive RAG: ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์ฟผ๋ฆฌ์˜ ๋ณต์žก์„ฑ์— ๋”ฐ๋ผ ๊ฐ€์žฅ ํšจ์œจ์ ์ธ ๊ฒ€์ƒ‰ ์ „๋žต์„ ๋™์ ์œผ๋กœ ์„ ํƒํ•˜๋Š” ์ธํ…”๋ฆฌ์ „์Šค ๊ณ„์ธต์„ ๋„์ž…ํ•ฉ๋‹ˆ๋‹ค. ๋ถ„๋ฅ˜๊ธฐ ๋ชจ๋ธ์ด ๋จผ์ € ์‚ฌ์šฉ์ž ์งˆ๋ฌธ์„ ๋ถ„์„ํ•˜๊ณ  ์ ์ ˆํ•œ ๊ฒฝ๋กœ๋กœ ๋ผ์šฐํŒ…ํ•ฉ๋‹ˆ๋‹ค: ๊ฐ„๋‹จํ•œ ์ฟผ๋ฆฌ๋Š” ๊ฒ€์ƒ‰ ์—†์ด LLM์ด ์ง์ ‘ ๋‹ต๋ณ€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ค‘๊ฐ„ ๋ณต์žก๋„์˜ ์ฟผ๋ฆฌ๋Š” ํ‘œ์ค€ ๋‹จ์ผ ๋‹จ๊ณ„ ๊ฒ€์ƒ‰์„ ํŠธ๋ฆฌ๊ฑฐํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋งค์šฐ ๋ณต์žกํ•œ ์ฟผ๋ฆฌ๋Š” ๋ฐ˜๋ณต์ ์ธ ๋‹ค๋‹จ๊ณ„ ๊ฒ€์ƒ‰ ํ”„๋กœ์„ธ์Šค๋ฅผ ํ™œ์„ฑํ™”ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๊ท ํ˜• ์žกํžŒ ์ ‘๊ทผ ๋ฐฉ์‹์€ ๊ฐ„๋‹จํ•œ ์ž‘์—…์— ๋Œ€ํ•œ ๊ณ„์‚ฐ ๋ฆฌ์†Œ์Šค๋ฅผ ์ ˆ์•ฝํ•˜๋ฉด์„œ ์–ด๋ ค์šด ์ž‘์—…์— ๋” ๊ฐ•๋ ฅํ•œ ๋ฐฉ๋ฒ•์„ ํ• ๋‹นํ•ฉ๋‹ˆ๋‹ค.

๊ตฌ์กฐ์  ๋ฐ ์—์ด์ „ํŠธ์  ํ˜์‹ 

๊ฐ€์žฅ ์ง„๋ณด๋œ RAG ์•„ํ‚คํ…์ฒ˜๋Š” ์ง€์‹ ๋ฒ ์ด์Šค์˜ ๊ตฌ์กฐ์™€ ์‹œ์Šคํ…œ ์ž์ฒด์˜ ๋ณธ์งˆ์„ ์žฌ๊ณ ํ•˜์—ฌ ์ž์œจ ์—์ด์ „ํŠธ๋ฅผ ํ–ฅํ•ด ๋‚˜์•„๊ฐ€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

  • Long-Context RAG (์˜ˆ: Long RAG, RAPTOR): ์ด ๊ธฐ์ˆ ์€ ํ‘œ์ค€ ์ฒญํ‚น์ด ์ค‘์š”ํ•œ ์ปจํ…์ŠคํŠธ๋ฅผ ์žƒ์„ ์ˆ˜ ์žˆ๋Š” ๋งค์šฐ ๊ธด ๋ฌธ์„œ๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ๊ณผ์ œ๋ฅผ ํ•ด๊ฒฐํ•ฉ๋‹ˆ๋‹ค. Long RAG๋Š” ์ „์ฒด ๋ฌธ์„œ ์„น์…˜๊ณผ ๊ฐ™์€ ๋” ํฐ ๊ฒ€์ƒ‰ ๋‹จ์œ„๋กœ ์ž‘๋™ํ•˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ์Šต๋‹ˆ๋‹ค. RAPTOR(Recursive Abstractive Processing for Tree-Organized Retrieval)๋Š” ๋ฌธ์„œ์— ๋Œ€ํ•œ ์š”์•ฝ์˜ ๊ณ„์ธต์  ํŠธ๋ฆฌ๋ฅผ ์ƒ์„ฑํ•˜์—ฌ ์„ธ๋ถ„ํ™”๋œ ์„ธ๋ถ€ ์ •๋ณด์—์„œ ๋†’์€ ์ˆ˜์ค€์˜ ๊ฐœ๋…์— ์ด๋ฅด๊ธฐ๊นŒ์ง€ ์—ฌ๋Ÿฌ ์ถ”์ƒํ™” ์ˆ˜์ค€์—์„œ ๊ฒ€์ƒ‰์ด ์ด๋ฃจ์–ด์งˆ ์ˆ˜ ์žˆ๋„๋ก ํ•ฉ๋‹ˆ๋‹ค.
  • GraphRAG: ์ด ์ ‘๊ทผ ๋ฐฉ์‹์€ ๊ตฌ์กฐํ™”๋œ ์ง€์‹ ๊ทธ๋ž˜ํ”„๋ฅผ ์™ธ๋ถ€ ๋ฐ์ดํ„ฐ ์†Œ์Šค๋กœ ํ™œ์šฉํ•ฉ๋‹ˆ๋‹ค. ๋น„๊ตฌ์กฐํ™”๋œ ํ…์ŠคํŠธ ์ฒญํฌ๋ฅผ ๊ฒ€์ƒ‰ํ•˜๋Š” ๋Œ€์‹  GraphRAG๋Š” ๋…ธ๋“œ์™€ ๊ทธ ๊ด€๊ณ„(ํ•˜์œ„ ๊ทธ๋ž˜ํ”„)๋ฅผ ๊ฒ€์ƒ‰ํ•ฉ๋‹ˆ๋‹ค. ์ด ๊ตฌ์กฐ๋Š” ๋ช…์‹œ์ ์ธ ๊ด€๊ณ„๋ฅผ ํ†ตํ•ด ์ด์งˆ์ ์ธ ์ •๋ณด ์กฐ๊ฐ์„ ์—ฐ๊ฒฐํ•˜๋Š” ๋‹ค์ค‘ ํ™‰ ์ถ”๋ก ์ด ํ•„์š”ํ•œ ๋ณต์žกํ•œ ์งˆ๋ฌธ์— ๋‹ตํ•˜๋Š” ๋ฐ ์ด์ƒ์ ์ด๋ฉฐ, ์ด๋Š” ๋น„๊ตฌ์กฐํ™”๋œ ํ…์ŠคํŠธ๋งŒ์œผ๋กœ๋Š” ๋งค์šฐ ์–ด๋ ค์šด ์ž‘์—…์ž…๋‹ˆ๋‹ค.
  • Agentic RAG: ์ด๋Š” RAG ์ง„ํ™”์˜ ํ˜„์žฌ ์ •์ ์„ ๋‚˜ํƒ€๋‚ด๋ฉฐ, RAG ํŒŒ์ดํ”„๋ผ์ธ์ด ์ž์œจ AI ์—์ด์ „ํŠธ๊ฐ€ ์‚ฌ์šฉํ•˜๋Š” ๋„๊ตฌ๋กœ ํ†ตํ•ฉ๋ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์—์ด์ „ํŠธ๋Š” ๋” ๋„“์€ ์ถ”๋ก  ํ”„๋ ˆ์ž„์›Œํฌ ๋‚ด์—์„œ RAG๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋ณต์žกํ•œ ๋‹ค๋‹จ๊ณ„ ์ž‘์—…์„ ์กฐ์œจํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. Agentic RAG์˜ ์ฃผ์š” ํŒจํ„ด์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค:
    • ๊ณ„ํš: ๋ณต์žกํ•œ ์‚ฌ์šฉ์ž ์š”์ฒญ์„ ๋…ผ๋ฆฌ์ ์ธ ํ•˜์œ„ ์ž‘์—… ์ˆœ์„œ๋กœ ๋ถ„ํ•ดํ•ฉ๋‹ˆ๋‹ค.
    • ๋„๊ตฌ ์‚ฌ์šฉ: RAG ๊ฒ€์ƒ‰๊ธฐ, API ๋˜๋Š” ์ฝ”๋“œ ์ธํ„ฐํ”„๋ฆฌํ„ฐ๋ฅผ ํฌํ•จํ•œ ๋‹ค์–‘ํ•œ ์™ธ๋ถ€ ๋„๊ตฌ์™€ ์ƒํ˜ธ ์ž‘์šฉํ•˜์—ฌ ์ •๋ณด๋ฅผ ์ˆ˜์ง‘ํ•˜๊ณ  ์กฐ์น˜๋ฅผ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค.
    • ์„ฑ์ฐฐ: ์ž์‹ ์˜ ํ–‰๋™ ๊ฒฐ๊ณผ์™€ ์ƒ์„ฑ๋œ ์ถœ๋ ฅ์˜ ํ’ˆ์งˆ์„ ํ‰๊ฐ€ํ•˜์—ฌ ์Šค์Šค๋กœ ์ˆ˜์ •ํ•˜๊ณ  ์ ‘๊ทผ ๋ฐฉ์‹์„ ๊ฐœ์„ ํ•ฉ๋‹ˆ๋‹ค.
    • ๋‹ค์ค‘ ์—์ด์ „ํŠธ ํ˜‘์—…: ๊ฐ๊ฐ ์ž์ฒด RAG ์‹œ์Šคํ…œ์„ ๊ฐ–์ถ˜ ์—ฌ๋Ÿฌ ์ „๋ฌธ ์—์ด์ „ํŠธ๊ฐ€ ํ•จ๊ป˜ ์ž‘์—…ํ•˜์—ฌ ๋ณต์žกํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•ฉ๋‹ˆ๋‹ค.
๊ธฐ์ˆ ํ•ต์‹ฌ ์•„์ด๋””์–ดํ•ด๊ฒฐ๋œ ๋ฌธ์ œ์ฃผ์š” ํ•œ๊ณ„์ 
Self-RAG“LLM์ด ํŠน์ˆ˜ “”์„ฑ์ฐฐ ํ† ํฐ””์„ ์‚ฌ์šฉํ•˜์—ฌ ์ž์ฒด ๊ฒ€์ƒ‰์„ ์ œ์–ดํ•˜๊ณ  ์ž์ฒด ์ถœ๋ ฅ์„ ๋น„ํ‰ํ•˜๋Š” ๋ฒ•์„ ๋ฐฐ์›€. “๊ฐ„๋‹จํ•œ ์ฟผ๋ฆฌ์— ๋Œ€ํ•œ ๋ถˆํ•„์š”ํ•œ ๊ฒ€์ƒ‰์„ ์ค„์ด๊ณ  ์ž๊ธฐ ํ‰๊ฐ€๋ฅผ ๊ฐ•์ œํ•˜์—ฌ ์‚ฌ์‹ค์  ๊ธฐ๋ฐ˜์„ ๊ฐœ์„ ํ•จ. “์„ฑ์ฐฐ ํ† ํฐ์„ ์ƒ์„ฑํ•˜๊ณ  ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด LLM์˜ ์ „๋ฌธ์ ์ธ ํ›ˆ๋ จ์ด ํ•„์š”ํ•˜๋ฉฐ, ํ›ˆ๋ จ ํŒŒ์ดํ”„๋ผ์ธ์— ๋ณต์žก์„ฑ์„ ๋”ํ•จ.
Corrective RAG (CRAG)“๊ฒ€์ƒ‰ ํ‰๊ฐ€๊ธฐ๊ฐ€ ๊ฒ€์ƒ‰๋œ ๋ฌธ์„œ๋ฅผ ํ‰๊ฐ€ํ•˜๊ณ  ๊ด€๋ จ์ด ์—†๋Š” ๊ฒฝ์šฐ ์ˆ˜์ • ์กฐ์น˜(์˜ˆ: ์›น ๊ฒ€์ƒ‰)๋ฅผ ํŠธ๋ฆฌ๊ฑฐํ•จ. “์ดˆ๊ธฐ ๊ฒ€์ƒ‰์ด ๋ถ€์‹คํ•  ๋•Œ ๊ฒฌ๊ณ ์„ฑ์„ ํ–ฅ์ƒ์‹œ์ผœ ์ƒ์„ฑ๊ธฐ๊ฐ€ ์ž˜๋ชป๋œ ์ปจํ…์ŠคํŠธ์— ์˜ํ•ด ์˜ค๋„๋˜๋Š” ๊ฒƒ์„ ๋ฐฉ์ง€ํ•จ.
Adaptive RAG“๋ถ„๋ฅ˜๊ธฐ๊ฐ€ ๋ณต์žก์„ฑ์— ๋”ฐ๋ผ ์ฟผ๋ฆฌ๋ฅผ ๋‹ค๋ฅธ ์ฒ˜๋ฆฌ ๊ฒฝ๋กœ(๊ฒ€์ƒ‰ ์—†์Œ, ๋‹จ์ผ ๋‹จ๊ณ„, ๋‹ค์ค‘ ๋‹จ๊ณ„)๋กœ ๋™์ ์œผ๋กœ ๋ผ์šฐํŒ…ํ•จ. “๋ณต์žกํ•œ ์ฟผ๋ฆฌ์— ํ•„์š”ํ•  ๋•Œ๋งŒ ๊ณ„์‚ฐ์ ์œผ๋กœ ๋น„์šฉ์ด ๋งŽ์ด ๋“œ๋Š” ๋ฐฉ๋ฒ•์„ ์ ์šฉํ•˜์—ฌ ์„ฑ๋Šฅ๊ณผ ๋น„์šฉ์˜ ๊ท ํ˜•์„ ๋งž์ถค.
Agentic RAG“์ž์œจ ์—์ด์ „ํŠธ๊ฐ€ ์„ฑ์ฐฐ๊ณผ ํ˜‘์—…์„ ํฌํ•จํ•˜๋Š” ๊ณ„ํš๋œ ๋‹ค๋‹จ๊ณ„ ์ถ”๋ก  ํ”„๋กœ์„ธ์Šค์—์„œ ์—ฌ๋Ÿฌ ๋„๊ตฌ ์ค‘ ํ•˜๋‚˜๋กœ RAG๋ฅผ ์‚ฌ์šฉํ•จ. “์›Œํฌํ”Œ๋กœ์šฐ ์ž๋™ํ™”๋‚˜ ์—ฐ๊ตฌ ๋ถ„์„๊ณผ ๊ฐ™์ด ๋‹จ์ˆœํ•œ ์งˆ์˜์‘๋‹ต ์ด์ƒ์˜ ๊ฒƒ์„ ์š”๊ตฌํ•˜๋Š” ๋งค์šฐ ๋ณต์žกํ•˜๊ณ  ๋™์ ์ธ ์ž‘์—…์„ ์ฒ˜๋ฆฌํ•จ.
GraphRAG“๋น„๊ตฌ์กฐํ™”๋œ ํ…์ŠคํŠธ ๋Œ€์‹  ๊ตฌ์กฐํ™”๋œ ์ง€์‹ ๊ทธ๋ž˜ํ”„์—์„œ ์ •๋ณด๋ฅผ ๊ฒ€์ƒ‰ํ•˜์—ฌ ๊ฐœ์ฒด ๊ด€๊ณ„๋ฅผ ํ™œ์šฉํ•จ. “์ผ๋ฐ˜ ํ…์ŠคํŠธ์—์„œ ์ถ”๋ก ํ•˜๊ธฐ ์–ด๋ ค์šด ๊ฐœ์ฒด ๊ฐ„์˜ ๊ด€๊ณ„์— ๋Œ€ํ•œ ์งˆ๋ฌธ๊ณผ ๋‹ค์ค‘ ํ™‰ ์ถ”๋ก ์— ํƒ์›”ํ•จ.
Long RAG / RAPTOR“๋ฌธ์„œ๋ฅผ ๋” ํฌ๊ณ  ์ผ๊ด€๋œ ์ฒญํฌ๋กœ ์ฒ˜๋ฆฌํ•˜๊ฑฐ๋‚˜ ๊ณ„์ธต์  ์š”์•ฝ ํŠธ๋ฆฌ๋ฅผ ์ƒ์„ฑํ•˜์—ฌ ์ปจํ…์ŠคํŠธ๋ฅผ ๋ณด์กดํ•จ. “๊ธด ๋ฌธ์„œ์˜ ์ž‘๊ณ  ๊ณ ์ •๋œ ํฌ๊ธฐ์˜ ์ฒญํ‚น์œผ๋กœ ๋ฐœ์ƒํ•˜๋Š” ์ปจํ…์ŠคํŠธ ๋‹จํŽธํ™” ๋ฐ ์ •๋ณด ์†์‹ค์„ ์™„ํ™”ํ•จ.

Export to Sheets

์‹ค๋ฌด์—์„œ์˜ RAG: ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ๋ฐ ์‚ฐ์—… ์˜ํ–ฅ

RAG์˜ ์ด๋ก ์  ๋ฐœ์ „์€ ๋‹ค์–‘ํ•œ ์‚ฐ์—… ์ „๋ฐ˜์— ๊ฑธ์ณ ์‹ค์งˆ์ ์ด๊ณ  ์˜ํ–ฅ๋ ฅ ์žˆ๋Š” ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์œผ๋กœ ์ „ํ™˜๋˜์—ˆ์Šต๋‹ˆ๋‹ค. RAG๋Š” LLM์˜ ๊ฐ•๋ ฅํ•œ ์ถ”๋ก  ๋Šฅ๋ ฅ๊ณผ ์กฐ์ง์ด ์ˆ˜์‹ญ ๋…„ ๋™์•ˆ ์ถ•์ ํ•ด ์˜จ ๋ฐฉ๋Œ€ํ•œ ๋…์ ์ , ๋น„๊ตฌ์กฐ์  ๋ฐ์ดํ„ฐ ์ €์žฅ์†Œ ์‚ฌ์ด์˜ ๊ฒฉ์ฐจ๋ฅผ ๋ฉ”์šฐ๋Š” “๋ผ์ŠคํŠธ ๋งˆ์ผ” ๊ธฐ์ˆ ์ž„์ด ์ž…์ฆ๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ํœด๋ฉด ์ƒํƒœ์˜ ๊ธฐ๊ด€ ์ง€์‹์„ ํ™œ์„ฑํ™”ํ•จ์œผ๋กœ์จ RAG๋Š” ์ฆ‰๊ฐ์ ์ด๊ณ  ์„ค๋“๋ ฅ ์žˆ๋Š” ํˆฌ์ž ์ˆ˜์ต์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.

์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ์ง€์‹ ๊ด€๋ฆฌ ๋ฐ ๋‚ด๋ถ€ ๋„๊ตฌ

RAG์˜ ๊ฐ€์žฅ ์ฆ‰๊ฐ์ ์ด๊ณ  ๊ด‘๋ฒ”์œ„ํ•œ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ์ค‘ ํ•˜๋‚˜๋Š” ๋‚ด๋ถ€ ์ง€์‹ ๊ด€๋ฆฌ๋ฅผ ํ˜์‹ ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ธฐ์—…์€ ์ข…์ข… ๊ธฐ์ˆ  ๋ฌธ์„œ, ํšŒ์‚ฌ ์ •์ฑ…, HR ๊ฐ€์ด๋“œ๋ผ์ธ ๋ฐ ๊ณผ๊ฑฐ ํ”„๋กœ์ ํŠธ ๋ฐ์ดํ„ฐ ํ˜•ํƒœ์˜ ๋ฐฉ๋Œ€ํ•˜๊ณ  ์‚ฌ์ผ๋กœํ™”๋œ ์ •๋ณด ์ €์žฅ์†Œ๋ฅผ ๋ณด์œ ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. RAG ๊ธฐ๋ฐ˜ ์ฑ—๋ด‡ ๋ฐ ๊ฒ€์ƒ‰ ์—”์ง„์€ ์ง€๋Šฅํ˜• ๋น„์„œ ์—ญํ• ์„ ํ•˜์—ฌ ์ง์›๋“ค์ด ์ž์—ฐ์–ด ์งˆ๋ฌธ์„ ํ•˜๊ณ  ์ด๋Ÿฌํ•œ ๋‚ด๋ถ€ ์†Œ์Šค์—์„œ ์ง์ ‘ ๊ฐ€์ ธ์˜จ ์ •ํ™•ํ•˜๊ณ  ์ƒํ™ฉ ์ธ์‹์ ์ธ ๋‹ต๋ณ€์„ ๋ฐ›์„ ์ˆ˜ ์žˆ๋„๋ก ํ•ฉ๋‹ˆ๋‹ค.

  • ์˜ˆ์‹œ: Bell Canada๋Š” ๋‚ด๋ถ€ ์ง€์‹ ๊ด€๋ฆฌ ํ”„๋กœ์„ธ์Šค๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋ชจ๋“ˆํ˜• RAG ์‹œ์Šคํ…œ์„ ๋ฐฐํฌํ•˜์—ฌ ์ง์›๋“ค์ด ์ตœ์‹  ํšŒ์‚ฌ ์ •๋ณด์— ์ ‘๊ทผํ•  ์ˆ˜ ์žˆ๋„๋ก ๋ณด์žฅํ•ฉ๋‹ˆ๋‹ค.
  • ์˜ˆ์‹œ: LinkedIn์€ RAG์™€ ์ง€์‹ ๊ทธ๋ž˜ํ”„๋ฅผ ๊ฒฐํ•ฉํ•œ ์ƒˆ๋กœ์šด ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜์—ฌ ๋‚ด๋ถ€ ๊ณ ๊ฐ ์„œ๋น„์Šค ํ—ฌํ”„๋ฐ์Šคํฌ๋ฅผ ๊ฐ•ํ™”ํ–ˆ์œผ๋ฉฐ, ๋ฌธ์ œ ํ•ด๊ฒฐ๊นŒ์ง€์˜ ์ค‘์•™๊ฐ’์„ 28% ์ด์ƒ ์„ฑ๊ณต์ ์œผ๋กœ ๋‹จ์ถ•ํ–ˆ์Šต๋‹ˆ๋‹ค.
  • ์˜ˆ์‹œ: ํ”„๋กœ์ ํŠธ ๊ด€๋ฆฌ ๋„๊ตฌ์ธ Asana๋Š” RAG๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์‚ฌ์šฉ์ž์—๊ฒŒ ํ”„๋กœ์ ํŠธ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์ง€๋Šฅ์ ์ธ ํ†ต์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.

๊ณ ๊ฐ ์„œ๋น„์Šค ๋ฐ ์ง€์›

RAG๋Š” ๋งค์šฐ ์œ ๋Šฅํ•œ ์ž๋™ํ™”๋œ ์ง€์› ์—์ด์ „ํŠธ๋ฅผ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•จ์œผ๋กœ์จ ๊ณ ๊ฐ ์„œ๋น„์Šค๋ฅผ ๋ณ€ํ™”์‹œํ‚ค๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฐ€์ƒ ๋น„์„œ๋Š” ์ œํ’ˆ ์„ค๋ช…์„œ, ๋ฌธ์ œ ํ•ด๊ฒฐ ๊ฐ€์ด๋“œ, FAQ ๋ฐ ๊ณ ๊ฐ ์ƒํ˜ธ ์ž‘์šฉ ๊ธฐ๋ก์—์„œ ์ •๋ณด๋ฅผ ๊ฒ€์ƒ‰ํ•˜์—ฌ ์ •ํ™•ํ•˜๊ณ  ๊ฐœ์ธํ™”๋˜์—ˆ์œผ๋ฉฐ ์ตœ์‹  ์‘๋‹ต์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ์ฆ‰๊ฐ์ ์ธ ๋‹ต๋ณ€์„ ์ œ๊ณตํ•˜์—ฌ ๊ณ ๊ฐ ๋งŒ์กฑ๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ฌ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ธ๊ฐ„ ์ƒ๋‹ด์›์ด ๋” ๋ณต์žกํ•œ ๋ฌธ์ œ๋ฅผ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ด์ค๋‹ˆ๋‹ค.

  • ์˜ˆ์‹œ: DoorDash๋Š” ๋ฐฐ๋‹ฌ ๊ณ„์•ฝ์ž(“Dashers”)๋ฅผ ์œ„ํ•ด ์ •๊ตํ•œ RAG ๊ธฐ๋ฐ˜ ์ฑ—๋ด‡์„ ๊ตฌ์ถ•ํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด ์‹œ์Šคํ…œ์—๋Š” ์ƒ์„ฑ๋œ ๋ชจ๋“  ์‘๋‹ต์˜ ์ •ํ™•์„ฑ๊ณผ ์ •์ฑ… ์ค€์ˆ˜๋ฅผ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๊ณ  ๋ณด์žฅํ•˜๋Š” “๊ฐ€๋“œ๋ ˆ์ผ” ๊ตฌ์„ฑ ์š”์†Œ๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.

์ „๋ฌธ ์ „๋ฌธ ๋ถ„์•ผ

์ •ํ™•์„ฑ๊ณผ ํŠน์ •ํ•˜๊ณ  ๋ฐ€๋„ ๋†’์€ ์ •๋ณด์— ๋Œ€ํ•œ ์ ‘๊ทผ์ด ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๋ถ„์•ผ์—์„œ RAG๋Š” ์ „๋ฌธ๊ฐ€๋ฅผ ์œ„ํ•œ ๊ฐ•๋ ฅํ•œ ๋ณด์กฐ ์กฐ์ข…์‚ฌ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค.

  • ๋ฒ•๋ฅ : RAG ์‹œ์Šคํ…œ์€ ๋ฐฉ๋Œ€ํ•œ ์–‘์˜ ํŒ๋ก€๋ฒ•, ๋ฒ•๊ทœ ๋ฐ ๋ฒ•์  ์„ ๋ก€๋ฅผ ์‹ ์†ํ•˜๊ฒŒ ์„ ๋ณ„ํ•˜์—ฌ ๋ฌธ์„œ ์ดˆ์•ˆ ์ž‘์„ฑ์ด๋‚˜ ์‚ฌ๋ก€ ๋ถ„์„์— ๊ด€๋ จ๋œ ์ •๋ณด๋ฅผ ์ฐพ์•„ ๋ฒ•๋ฅ  ์—ฐ๊ตฌ๋ฅผ ๊ฐ€์†ํ™”ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. LexisNexis๋Š” ๊ณ ๊ธ‰ ๋ฒ•๋ฅ  ๋ถ„์„์„ ์œ„ํ•ด RAG๋ฅผ ์ ์šฉํ•˜๋Š” ํšŒ์‚ฌ ์ค‘ ํ•˜๋‚˜์ž…๋‹ˆ๋‹ค.
  • ๊ธˆ์œต: ๊ธˆ์œต ๋ถ„์„๊ฐ€๋“ค์€ RAG๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์‹ค์‹œ๊ฐ„ ์‹œ์žฅ ๋ฐ์ดํ„ฐ, ์†๋ณด ๋ฐ ํšŒ์‚ฌ ๋ณด๊ณ ์„œ๋ฅผ ์ข…ํ•ฉํ•˜์—ฌ ์‹œ๊ธฐ์ ์ ˆํ•œ ํ†ต์ฐฐ๋ ฅ, ์˜ˆ์ธก ๋ฐ ํˆฌ์ž ์ถ”์ฒœ์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. Bloomberg Terminal์€ RAG๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์‹œ์žฅ ํ†ต์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•˜๋Š” ๊ธˆ์œต ๋„๊ตฌ์˜ ์ €๋ช…ํ•œ ์˜ˆ์ž…๋‹ˆ๋‹ค.
  • ์˜๋ฃŒ: RAG๋Š” ์ตœ์‹  ์˜ํ•™ ์—ฐ๊ตฌ, ํ™˜์ž ๊ฑด๊ฐ• ๊ธฐ๋ก ๋ฐ ํ™•๋ฆฝ๋œ ์ž„์ƒ ๊ฐ€์ด๋“œ๋ผ์ธ์—์„œ ์ •๋ณด๋ฅผ ๊ฒ€์ƒ‰ํ•˜์—ฌ ์ง„๋‹จ์„ ์ œ์•ˆํ•˜๊ฑฐ๋‚˜ ๊ฐœ์ธํ™”๋œ ์น˜๋ฃŒ ๊ณ„ํš์„ ์ˆ˜๋ฆฝํ•จ์œผ๋กœ์จ ์ž„์ƒ์˜๊ฐ€ ๋” ์ •๋ณด์— ์ž…๊ฐํ•œ ๊ฒฐ์ •์„ ๋‚ด๋ฆฌ๋„๋ก ๋•์Šต๋‹ˆ๋‹ค. IBM Watson Health๋Š” ์ด ๋ชฉ์ ์œผ๋กœ RAG๋ฅผ ํ™œ์šฉํ•ฉ๋‹ˆ๋‹ค.

์ฝ˜ํ…์ธ  ๋ฐ ์ฝ”๋“œ ์ƒ์„ฑ

RAG๋Š” ์‚ฌ์‹ค์ ์ด๊ณ  ๊ด€๋ จ์„ฑ ์žˆ๋Š” ๋ฐ์ดํ„ฐ์— ๊ธฐ๋ฐ˜์„ ๋‘ ์œผ๋กœ์จ ์ฐฝ์˜์ ์ด๊ณ  ๊ธฐ์ˆ ์ ์ธ ์ƒ์„ฑ ์ž‘์—…์„ ๋ชจ๋‘ ํ–ฅ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค. ์ด๋Š” ๋งˆ์ผ€ํŒ… ์ฝ˜ํ…์ธ  ์ œ์ž‘, SEO ์ตœ์ ํ™”, ๋งž์ถคํ˜• ์ด๋ฉ”์ผ ์ดˆ์•ˆ ์ž‘์„ฑ ๋ฐ ํšŒ์˜ ์š”์•ฝ์— ์ ์šฉ๋ฉ๋‹ˆ๋‹ค.

  • ์˜ˆ์‹œ: ์ฝ˜ํ…์ธ  ์ œ์ž‘ ํ”Œ๋žซํผ Jasper๋Š” RAG๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ƒ์„ฑ๋œ ๊ธฐ์‚ฌ๊ฐ€ ์ •ํ™•ํ•˜๊ณ  ์ƒํ™ฉ์„ ์ธ์‹ํ•˜๋„๋ก ๋ณด์žฅํ•ฉ๋‹ˆ๋‹ค.
  • ์˜ˆ์‹œ: Grammarly๋Š” RAG๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ด๋ฉ”์ผ ๊ตํ™˜์˜ ์ปจํ…์ŠคํŠธ๋ฅผ ๋ถ„์„ํ•˜๊ณ  ํ†ค๊ณผ ์Šคํƒ€์ผ์— ๋Œ€ํ•œ ์ ์ ˆํ•œ ์กฐ์ •์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค.
  • ์˜ˆ์‹œ: ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ์—์„œ RAG ๊ธฐ๋ฐ˜ ๋„๊ตฌ๋Š” ์ตœ์‹  ๋ฒ„์ „์˜ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ๋ฐ API์—์„œ ์ฝ”๋“œ ์กฐ๊ฐ ๋ฐ ์‚ฌ์šฉ ์˜ˆ์ œ๋ฅผ ๊ฒ€์ƒ‰ํ•˜์—ฌ ํ”„๋กœ๊ทธ๋ž˜๋จธ๋ฅผ ์ง€์›ํ•จ์œผ๋กœ์จ ๊ฐœ๋ฐœ์ž ์ƒ์‚ฐ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ  ์˜ค๋ฅ˜๋ฅผ ์ค„์ž…๋‹ˆ๋‹ค.

๊ณผ์ œ, ์œ„ํ—˜ ๋ฐ ์™„ํ™” ์ „๋žต

๋ณ€ํ˜์ ์ธ ์ž ์žฌ๋ ฅ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ๊ฐ•๋ ฅํ•˜๊ณ  ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” RAG ์‹œ์Šคํ…œ์„ ๊ตฌํ˜„ํ•˜๋Š” ๊ฒƒ์€ ๊ณผ์ œ๋กœ ๊ฐ€๋“ ์ฐฌ ๋ณต์žกํ•œ ์—”์ง€๋‹ˆ์–ด๋ง ์ž‘์—…์ž…๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ž ์žฌ์ ์ธ ์‹คํŒจ ์ง€์ , ๋ณด์•ˆ ์œ„ํ—˜ ๋ฐ ํ‰๊ฐ€์˜ ๋ฏธ๋ฌ˜ํ•จ์— ๋Œ€ํ•œ ๋น„ํŒ์ ์ธ ์ดํ•ด๋Š” ์„ฑ๊ณต์ ์ธ ๋ฐฐํฌ์— ํ•„์ˆ˜์ ์ž…๋‹ˆ๋‹ค.

๊ฒ€์ƒ‰ ํ’ˆ์งˆ ๋ฐ ์ปจํ…์ŠคํŠธ ์ œํ•œ

RAG ํšจ๊ณผ์˜ ํ•ต์‹ฌ์€ ๊ฒ€์ƒ‰๊ธฐ์— ์žˆ์œผ๋ฉฐ, ๊ฒ€์ƒ‰ ํ’ˆ์งˆ์€ ์‹œ์Šคํ…œ์˜ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ์ทจ์•ฝ์ ์ž…๋‹ˆ๋‹ค. “์“ฐ๋ ˆ๊ธฐ๊ฐ€ ๋“ค์–ด๊ฐ€๋ฉด ์“ฐ๋ ˆ๊ธฐ๊ฐ€ ๋‚˜์˜จ๋‹ค”๋Š” ์›์น™์ด ํŠนํžˆ ๊ฐ•ํ•˜๊ฒŒ ์ ์šฉ๋ฉ๋‹ˆ๋‹ค. ๊ฒ€์ƒ‰๊ธฐ๊ฐ€ ๋ถ€์‹คํ•œ ์ปจํ…์ŠคํŠธ๋ฅผ ์ œ๊ณตํ•˜๋ฉด ์ƒ์„ฑ๊ธฐ๋Š” ๋ถ€์‹คํ•œ ์‘๋‹ต์„ ์ƒ์„ฑํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.

  • “๊ฑด์ดˆ ๋”๋ฏธ์—์„œ ๋ฐ”๋Š˜ ์ฐพ๊ธฐ” ๋ฌธ์ œ: ์ด๋Š” ์—ฌ๋Ÿฌ ๊ด€๋ จ ์‹คํŒจ ๋ชจ๋“œ๋ฅผ ํฌํ•จํ•ฉ๋‹ˆ๋‹ค. ์‹œ์Šคํ…œ์€ ์ง€์‹ ๋ฒ ์ด์Šค์— ๋‹ต๋ณ€์ด ์—†๋Š”๋ฐ๋„ LLM์ด ์ž์‹ ์˜ ๋ฌด์ง€๋ฅผ ์ธ์ •ํ•˜๋Š” ๋Œ€์‹  ์‘๋‹ต์„ ํ™˜๊ฐํ•˜๋Š” ๋ˆ„๋ฝ๋œ ์ฝ˜ํ…์ธ ๋กœ ์ธํ•ด ์‹คํŒจํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ ๊ฒ€์ƒ‰๊ธฐ๊ฐ€ ๊ด€๋ จ ์—†๊ฑฐ๋‚˜ ๋ถˆ์™„์ „ํ•œ ๋ฌธ์„œ๋ฅผ ๊ฐ€์ ธ์˜ค๋Š” ๋‚ฎ์€ ์ •๋ฐ€๋„ ๋˜๋Š” ์žฌํ˜„์œจ ๋˜๋Š” ์˜ฌ๋ฐ”๋ฅธ ๋ฌธ์„œ๊ฐ€ ๋ฐœ๊ฒฌ๋˜์—ˆ์ง€๋งŒ ์ตœ์ข… ์ปจํ…์ŠคํŠธ์— ํฌํ•จ๋  ๋งŒํผ ๋†’๊ฒŒ ์ˆœ์œ„๊ฐ€ ๋งค๊ฒจ์ง€์ง€ ์•Š๋Š” ์ตœ์ ํ™”๋˜์ง€ ์•Š์€ ์ˆœ์œ„๋กœ ์ธํ•ด ์‹คํŒจํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
  • ์ปจํ…์ŠคํŠธ ๊ธธ์ด ์ œํ•œ: LLM์€ ๊ณ ์ •๋œ ํฌ๊ธฐ์˜ ์ปจํ…์ŠคํŠธ ์ฐฝ์œผ๋กœ ์ž‘๋™ํ•ฉ๋‹ˆ๋‹ค. ๊ฒ€์ƒ‰ ํ”„๋กœ์„ธ์Šค๊ฐ€ ๋„ˆ๋ฌด ๋งŽ์€ ๋ฌธ์„œ๋ฅผ ๋ฐ˜ํ™˜ํ•˜๊ฑฐ๋‚˜ ๊ด€๋ จ ๋ฌธ์„œ๊ฐ€ ์ง€๋‚˜์น˜๊ฒŒ ๊ธด ๊ฒฝ์šฐ, ์ฆ๊ฐ• ๋‹จ๊ณ„์—์„œ ์ค‘์š”ํ•œ ์ •๋ณด๊ฐ€ ์ž˜๋ฆฌ๊ณ  ์†์‹ค๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ์ƒ์„ฑ๊ธฐ๊ฐ€ ์™„์ „ํ•˜๊ณ  ์ •ํ™•ํ•œ ๋‹ต๋ณ€์„ ํ˜•์„ฑํ•˜๋Š” ๋ฐ ํ•„์š”ํ•œ ๋ฐ”๋กœ ๊ทธ ์„ธ๋ถ€ ์ •๋ณด๋ฅผ ๋ฐ•ํƒˆํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์‹œ์Šคํ…œ ์„ฑ๋Šฅ ๋ฐ ๋ณต์žก์„ฑ

๊ฒ€์ƒ‰ ๋ฃจํ”„๋ฅผ ๋„์ž…ํ•˜๋ฉด ํ•„์—ฐ์ ์œผ๋กœ ๋ณต์žก์„ฑ ๊ณ„์ธต๊ณผ ์ž ์žฌ์ ์ธ ์„ฑ๋Šฅ ๋ณ‘๋ชฉ ํ˜„์ƒ์ด ์ถ”๊ฐ€๋ฉ๋‹ˆ๋‹ค.

  • ์ง€์—ฐ ์‹œ๊ฐ„: RAG ์‹œ์Šคํ…œ์˜ ๊ฐ ์ฟผ๋ฆฌ๋Š” ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋กœ์˜ ์ตœ์†Œ ํ•œ ๋ฒˆ์˜ ์™•๋ณต๊ณผ LLM์˜ ์ƒ์„ฑ ์‹œ๊ฐ„์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. ์žฌ์ˆœ์œ„ํ™”๋‚˜ ๋‹ค๋‹จ๊ณ„ ๊ฒ€์ƒ‰๊ณผ ๊ฐ™์€ ๊ณ ๊ธ‰ ๊ธฐ์ˆ ์€ ์ถ”๊ฐ€ ๋‹จ๊ณ„๋ฅผ ๋”ํ•˜์—ฌ ์ „์ฒด ์‘๋‹ต ์‹œ๊ฐ„(์ง€์—ฐ ์‹œ๊ฐ„)์„ ์ฆ๊ฐ€์‹œํ‚ต๋‹ˆ๋‹ค. ์ด๋Š” ์‹ค์‹œ๊ฐ„ ๋Œ€ํ™”ํ˜• ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์—์„œ ์ค‘์š”ํ•œ ๋ฌธ์ œ๊ฐ€ ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  • ๊ณ„์‚ฐ ๋น„์šฉ ๋ฐ ๋ณต์žก์„ฑ: ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ํŒŒ์ดํ”„๋ผ์ธ, ๋ฒกํ„ฐ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ๋ฐ ์ง€์†์ ์ธ ์—…๋ฐ์ดํŠธ ํ”„๋กœ์„ธ์Šค๋ฅผ ํฌํ•จํ•œ ์ „์ฒด RAG ์Šคํƒ์„ ๊ตฌ์ถ•, ๋ฐฐํฌ ๋ฐ ์œ ์ง€ ๊ด€๋ฆฌํ•˜๋Š” ๊ฒƒ์€ ์‚ฌ์†Œํ•˜์ง€ ์•Š์€ ์—”์ง€๋‹ˆ์–ด๋ง ์ž‘์—…์ด๋ฉฐ, ํŠนํžˆ ์ง€์‹ ๋ฒ ์ด์Šค๊ฐ€ ํ™•์žฅ๋จ์— ๋”ฐ๋ผ ๊ณ„์‚ฐ ๋น„์šฉ์ด ๋งŽ์ด ๋“ค๊ณ  ๋ฆฌ์†Œ์Šค ์ง‘์•ฝ์ ์ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๋ณด์•ˆ ๋ฐ ์‹ ๋ขฐ์„ฑ

LLM์„ ์™ธ๋ถ€ ๋ฐ์ดํ„ฐ ์†Œ์Šค์— ์—ฐ๊ฒฐํ•จ์œผ๋กœ์จ RAG๋Š” ์ƒˆ๋กœ์šด ๊ณต๊ฒฉ ํ‘œ๋ฉด๊ณผ ๋ฐ์ดํ„ฐ ๊ฑฐ๋ฒ„๋„Œ์Šค์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ๊ณ ๋ ค ์‚ฌํ•ญ์„ ๋„์ž…ํ•ฉ๋‹ˆ๋‹ค.

  • ์ ๋Œ€์  ๊ณต๊ฒฉ ๋ฐ ๋ฐ์ดํ„ฐ ํฌ์ด์ฆˆ๋‹: ์™ธ๋ถ€ ์ง€์‹ ๋ฒ ์ด์Šค๋Š” ์•…์˜์ ์ธ ํ–‰์œ„์ž์˜ ํ‘œ์ ์ด ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์—ฐ๊ตฌ์— ๋”ฐ๋ฅด๋ฉด ๊ณต๊ฒฉ์ž๊ฐ€ ๋ฐ์ดํ„ฐ ์†Œ์Šค์— ์‚ฌ๊ธฐ์„ฑ ์ •๋ณด๋ฅผ ์ฃผ์ž…ํ•˜๋Š” POISONCRAFT์™€ ๊ฐ™์€ ๊ณต๊ฒฉ์ด ์ž…์ฆ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ์‹œ์Šคํ…œ์„ “์˜ค์—ผ”์‹œ์ผœ RAG ๋ชจ๋ธ์ด ์˜คํ•ด์˜ ์†Œ์ง€๊ฐ€ ์žˆ๋Š” ์ •๋ณด๋‚˜ ์‚ฌ๊ธฐ์„ฑ ์›น์‚ฌ์ดํŠธ๋ฅผ ๊ฒ€์ƒ‰ํ•˜๊ณ  ์ธ์šฉํ•˜๊ฒŒ ํ•˜์—ฌ ๋ฌด๊ฒฐ์„ฑ์„ ์†์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  • ๋ฐ์ดํ„ฐ ์‹ ๋ขฐ์„ฑ ๋ฐ ํŽธํ–ฅ: RAG ์‹œ์Šคํ…œ์€ ๊ทผ๋ณธ์ ์œผ๋กœ ์ง€์‹ ์†Œ์Šค์˜ ํ’ˆ์งˆ์— ์˜์กดํ•ฉ๋‹ˆ๋‹ค. ์†Œ์Šค ๋ฐ์ดํ„ฐ๊ฐ€ ์‹ ๋ขฐํ•  ์ˆ˜ ์—†๊ฑฐ๋‚˜, ํŽธํ–ฅ๋˜์—ˆ๊ฑฐ๋‚˜, ์˜ค๋ž˜๋œ ๊ฒฝ์šฐ ์ƒ์„ฑ๋œ ์ถœ๋ ฅ์€ ์ด๋Ÿฌํ•œ ๊ฒฐํ•จ์„ ์ƒ์†ํ•ฉ๋‹ˆ๋‹ค. ์—ฌ๋Ÿฌ ์†Œ์Šค์—์„œ ๊ฒ€์ƒ‰๋œ ๋ฌธ์„œ๊ฐ€ ์„œ๋กœ ๋‹ค๋ฅธ ๊ฒฝ์šฐ ๋ชจ์ˆœ๋œ ์ •๋ณด๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐฉ๋ฒ•๋„ ์ค‘์š”ํ•œ ๊ณผ์ œ์ž…๋‹ˆ๋‹ค.
  • ๊ฐœ์ธ์ •๋ณด ๋ณดํ˜ธ ๋ฐ ๋ณด์•ˆ: ์ง€์‹ ๋ฒ ์ด์Šค์— ๋ฏผ๊ฐํ•˜๊ฑฐ๋‚˜ ๊ฐœ์ธ ์‹๋ณ„ ์ •๋ณด(PII)๊ฐ€ ํฌํ•จ๋œ ๊ฒฝ์šฐ ๊ฐ•๋ ฅํ•œ ๋ณด์•ˆ ์กฐ์น˜๋ฅผ ๊ตฌํ˜„ํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€์žฅ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์—๋Š” ๋ฌด๋‹จ ๋ฐ์ดํ„ฐ ๋…ธ์ถœ์„ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•œ ์—„๊ฒฉํ•œ ์ ‘๊ทผ ์ œ์–ด, ๋ฐ์ดํ„ฐ ์ต๋ช…ํ™” ๊ธฐ์ˆ  ๋ฐ ์•”ํ˜ธํ™”๊ฐ€ ํฌํ•จ๋ฉ๋‹ˆ๋‹ค.

ํ‰๊ฐ€ ๋ฐ ๋ชจ๋‹ˆํ„ฐ๋ง

RAG ์‹œ์Šคํ…œ์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๋Š” ๊ฒƒ์€ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ํŠน์„ฑ, ๊ตฌ์„ฑ ์š”์†Œ ๊ฐ„์˜ ์ƒํ˜ธ ์ž‘์šฉ ๋ฐ ์ง€์‹ ๋ฒ ์ด์Šค์˜ ๋™์  ์ƒํƒœ๋กœ ์ธํ•ด ์•…๋ช… ๋†’๊ฒŒ ์–ด๋ ต์Šต๋‹ˆ๋‹ค. ์‹œ์Šคํ…œ ํ’ˆ์งˆ์„ ์ธก์ •ํ•˜๊ณ  ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ํฌ๊ด„์ ์ธ ํ‰๊ฐ€ ํ”„๋ ˆ์ž„์›Œํฌ๊ฐ€ ํ•„์š”ํ•˜์ง€๋งŒ, ํ˜„์žฌ ์ด ๋ถ„์•ผ์—๋Š” ํ†ต์ผ๋œ ํ‘œ์ค€ ํŒจ๋Ÿฌ๋‹ค์ž„์ด ๋ถ€์กฑํ•ฉ๋‹ˆ๋‹ค. ํšจ๊ณผ์ ์ธ ํ‰๊ฐ€๋Š” ๊ฒ€์ƒ‰ ๋ฐ ์ƒ์„ฑ ๊ตฌ์„ฑ ์š”์†Œ๋ฅผ ๋…๋ฆฝ์ ์œผ๋กœ ๊ทธ๋ฆฌ๊ณ  ์ „์ฒด์ ์œผ๋กœ ํ‰๊ฐ€ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.

๊ตฌ์„ฑ ์š”์†Œ๋ฉ”ํŠธ๋ฆญ์ •์˜๋‹ต๋ณ€ํ•˜๋Š” ์งˆ๋ฌธ
๊ฒ€์ƒ‰์ปจํ…์ŠคํŠธ ์ •๋ฐ€๋„๊ฒ€์ƒ‰๋œ ๋ฌธ์„œ ์ค‘ ์ฟผ๋ฆฌ์™€ ๊ด€๋ จ๋œ ๋ฌธ์„œ์˜ ๋น„์œจ.“””๊ฒ€์ƒ‰๋œ ๋ฌธ์„œ๊ฐ€ ์‹ค์ œ๋กœ ์งˆ๋ฌธ์— ๋‹ตํ•˜๋Š” ๋ฐ ์œ ์šฉํ•œ๊ฐ€?””
์ปจํ…์ŠคํŠธ ์žฌํ˜„์œจ์ง€์‹ ๋ฒ ์ด์Šค์˜ ๋ชจ๋“  ๊ด€๋ จ ๋ฌธ์„œ ์ค‘ ์„ฑ๊ณต์ ์œผ๋กœ ๊ฒ€์ƒ‰๋œ ๋ฌธ์„œ์˜ ๋น„์œจ.
์ƒ์„ฑ์ถฉ์‹ค๋„์ƒ์„ฑ๋œ ๋‹ต๋ณ€์ด ๊ฒ€์ƒ‰๋œ ์ปจํ…์ŠคํŠธ์— ์ œ์‹œ๋œ ์ •๋ณด์™€ ์‚ฌ์‹ค์ ์œผ๋กœ ์ผ์น˜ํ•˜๋Š” ์ •๋„.
๋‹ต๋ณ€ ๊ด€๋ จ์„ฑ์ƒ์„ฑ๋œ ๋‹ต๋ณ€์ด ์‚ฌ์šฉ์ž์˜ ์›๋ž˜ ์ฟผ๋ฆฌ ๋ฐ ์˜๋„์— ์ง์ ‘์ ์œผ๋กœ ๋ถ€ํ•ฉํ•˜๋Š” ์ •๋„.
๋‹ต๋ณ€ ์ •ํ™•์„ฑ์ƒ์„ฑ๋œ ๋‹ต๋ณ€์ด ์ •๋‹ต ๋˜๋Š” ์ƒ˜ํ”Œ ์‘๋‹ต๊ณผ ๋น„๊ตํ–ˆ์„ ๋•Œ์˜ ์‚ฌ์‹ค์  ์ •ํ™•์„ฑ.

Export to Sheets

๊ฒฐ๋ก  ๋ฐ ๋ฏธ๋ž˜ ๋ฐฉํ–ฅ

์—ฐ๊ตฌ ๊ฒฐ๊ณผ ์ข…ํ•ฉ

๊ฒ€์ƒ‰ ์ฆ๊ฐ• ์ƒ์„ฑ์€ ์‘์šฉ ์ธ๊ณต์ง€๋Šฅ์˜ ๊ถค์ ์„ ๊ทผ๋ณธ์ ์œผ๋กœ ๋ฐ”๊พธ์—ˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ์˜ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ์ทจ์•ฝ์ ์ธ ์ •์ ์ธ ์ง€์‹๊ณผ ํ™˜๊ฐ ๊ฒฝํ–ฅ์„ ์™ธ๋ถ€์˜ ๊ฒ€์ฆ ๊ฐ€๋Šฅํ•œ ์‚ฌ์‹ค์— ๊ธฐ๋ฐ˜์„ ๋‘ ์œผ๋กœ์จ ํ•ด๊ฒฐํ•ฉ๋‹ˆ๋‹ค. RAG๋Š” LLM์„ ๋‹จ์ง€ ์ฐฝ์˜์ ์ธ ํ…์ŠคํŠธ ์ƒ์„ฑ๊ธฐ์—์„œ ์ •ํ™•ํ•˜๊ณ  ์‹œ๊ธฐ์ ์ ˆํ•˜๋ฉฐ ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ์‘๋‹ต์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ•๋ ฅํ•œ ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ๊ธ‰ ์ถ”๋ก  ์—”์ง„์œผ๋กœ ๋ณ€๋ชจ์‹œํ‚ต๋‹ˆ๋‹ค. ๊ทธ ํ•ต์‹ฌ ๊ฐ€์น˜ ์ œ์•ˆ์€ ์‚ฌ์‹ค์  ์ •ํ™•์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ , ์ธ์šฉ์„ ํ†ตํ•ด ๊ฐ์‚ฌ ๊ฐ€๋Šฅํ•œ ๊ฒ€์ฆ ๊ฐ€๋Šฅ์„ฑ์„ ์ œ๊ณตํ•˜๋ฉฐ, ์ •๋ณด์˜ ์ตœ์‹ ์„ฑ์„ ๋ณด์žฅํ•˜๊ณ , ๊ฐ•๋ ฅํ•œ ๋ฐ์ดํ„ฐ ๊ฑฐ๋ฒ„๋„Œ์Šค๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๋Šฅ๋ ฅ์— ์žˆ์Šต๋‹ˆ๋‹ค. ๊ณ ์œ„ํ—˜ ํ™˜๊ฒฝ์—์„œ LLM์„ ๋ฐฐํฌํ•˜๋Š” ๊ฒƒ๊ณผ ๊ด€๋ จ๋œ ์ฃผ์š” ์œ„ํ—˜์„ ์™„ํ™”ํ•จ์œผ๋กœ์จ RAG๋Š” ํ˜„๋Œ€ AI ๊ธฐ์ˆ  ์Šคํƒ์˜ ํ•„์ˆ˜ ๋ถˆ๊ฐ€๊ฒฐํ•œ ๊ตฌ์„ฑ ์š”์†Œ๊ฐ€ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ

RAG์˜ ์ง„ํ™”๋Š” ์•„์ง ๋๋‚˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค. ์ด ๊ธฐ์ˆ ์˜ ๋ฏธ๋ž˜ ๊ถค์ ์€ ๋” ํฐ ๊ธฐ๋Šฅ, ๊ฒฌ๊ณ ์„ฑ ๋ฐ ํ†ตํ•ฉ์„ ํ–ฅํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ง„ํ–‰ ์ค‘์ธ ์—ฐ๊ตฌ ๋ฐ ๊ฐœ๋ฐœ์˜ ์ฃผ์š” ๋ถ„์•ผ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค:

  • ์–‘์‹ ํ™•์žฅ: RAG์˜ ์›์น™์€ ํ…์ŠคํŠธ๋ฅผ ๋„˜์–ด ๋‹ค์ค‘ ๋ชจ๋“œ ๋ฐ์ดํ„ฐ๋ฅผ ํฌ๊ด„ํ•˜๋„๋ก ํ™•์žฅ๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋ฏธ๋ž˜์˜ ์‹œ์Šคํ…œ์€ ํ…์ŠคํŠธ, ์ด๋ฏธ์ง€, ์˜ค๋””์˜ค ๋ฐ ๋น„๋””์˜ค์˜ ์กฐํ•ฉ์—์„œ ์ •๋ณด๋ฅผ ๊ฒ€์ƒ‰ํ•˜๊ณ  ์ข…ํ•ฉํ•˜์—ฌ ๋ณต์žกํ•œ ์ฟผ๋ฆฌ์— ๋Œ€ํ•œ ๋ณด๋‹ค ์ „์ฒด์ ์ธ ์ดํ•ด๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
  • ํ–ฅ์ƒ๋œ ์ถ”๋ก : ๋” ์ •๊ตํ•œ ๋‹ค์ค‘ ํ™‰ ๋ฐ ๋‹ค์ค‘ ๋‹จ๊ณ„ ์ถ”๋ก  ๊ธฐ๋Šฅ์„ ๊ฐœ๋ฐœํ•˜๋ ค๋Š” ๊ฐ•ํ•œ ์ถ”์ง„๋ ฅ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด RAG ์‹œ์Šคํ…œ์€ ์ˆ˜๋งŽ์€ ๋ฌธ์„œ์™€ ๋…ผ๋ฆฌ์  ๋‹จ๊ณ„๋ฅผ ํ†ตํ•ด ์ฆ๊ฑฐ๋ฅผ ์ข…ํ•ฉํ•ด์•ผ ํ•˜๋Š” ์ ์  ๋” ๋ณต์žกํ•œ ์งˆ๋ฌธ์„ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜์–ด ์ธ๊ฐ„๊ณผ ๊ฐ™์€ ์—ฐ๊ตฌ ๋ฐ ๋ถ„์„์— ๋” ๊ฐ€๊นŒ์›Œ์งˆ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
  • ๊ฒฌ๊ณ ์„ฑ ๋ฐ ์‹ ๋ขฐ์„ฑ ํ–ฅ์ƒ: RAG ์‹œ์Šคํ…œ์ด ๋”์šฑ ์ค‘์š”ํ•ด์ง์— ๋”ฐ๋ผ ๋ฐ์ดํ„ฐ ํฌ์ด์ฆˆ๋‹๊ณผ ๊ฐ™์€ ์ ๋Œ€์  ๊ณต๊ฒฉ์— ๋Œ€ํ•œ ๋ฐฉ์–ด, ๋ฐ์ดํ„ฐ ์†Œ์Šค์˜ ๋‚ด์žฌ๋œ ํŽธํ–ฅ ์™„ํ™”, ๋ณด๋‹ค ํฌ๊ด„์ ์ด๊ณ  ํ‘œ์ค€ํ™”๋œ ํ‰๊ฐ€ ํ”„๋ ˆ์ž„์›Œํฌ ๊ฐœ๋ฐœ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์‹ ๋ขฐ์„ฑ๊ณผ ์•ˆ์ „์„ฑ์„ ๋ณด์žฅํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
  • RAG ๊ธฐ์ˆ  ์Šคํƒ ๋ฐ ์ƒํƒœ๊ณ„: ์ด ๋ถ„์•ผ์˜ ์„ฑ์ˆ™์€ ๋„๊ตฌ, ํ”Œ๋žซํผ ๋ฐ ์„œ๋น„์Šค์˜ ๊ฐ•๋ ฅํ•œ ์ƒํƒœ๊ณ„ ๊ฐœ๋ฐœ๋กœ ์ด์–ด์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. LangChain ๋ฐ LlamaIndex์™€ ๊ฐ™์€ ํ”„๋ ˆ์ž„์›Œํฌ์™€ ์ฃผ์š” ํด๋ผ์šฐ๋“œ ์ œ๊ณต์—…์ฒด์˜ “RAG-as-a-Service” ์˜คํผ๋ง์€ ๊ฐœ๋ฐœ ํ”„๋กœ์„ธ์Šค๋ฅผ ๋‹จ์ˆœํ™”ํ•˜๊ณ  ์‚ฐ์—… ์ „๋ฐ˜์— ๊ฑธ์ณ RAG์˜ ์ฑ„ํƒ์„ ๊ฐ€์†ํ™”ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

๊ถ๊ทน์ ์œผ๋กœ RAG์˜ ๋ฏธ๋ž˜๋Š” ์—์ด์ „ํŠธ AI์˜ ๋” ๋„“์€ ๋ถ„์•ผ์™€์˜ ์œตํ•ฉ์œผ๋กœ ๋ณด์ž…๋‹ˆ๋‹ค. Naive์—์„œ Advanced ๋ฐ Modular RAG๋กœ์˜ ๋ช…ํ™•ํ•œ ์ง„ํ™” ์ถ”์„ธ๋Š” ๋” ํฐ ์ž์œจ์„ฑ๊ณผ ์œ ์—ฐ์„ฑ์„ ํ–ฅํ•œ ์ผ๊ด€๋œ ์›€์ง์ž„์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. Self-RAG ๋ฐ Adaptive RAG์™€ ๊ฐ™์€ ๊ณ ๊ธ‰ ๊ธฐ์ˆ ์€ RAG ํŒŒ์ดํ”„๋ผ์ธ ์ž์ฒด ๋‚ด์— ์˜์‚ฌ ๊ฒฐ์ • ๊ธฐ๋Šฅ์„ ๋„์ž…ํ•ฉ๋‹ˆ๋‹ค. ์ฆ‰, ์‹œ์Šคํ…œ์€ “์ง€๊ธˆ ์ •๋ณด๋ฅผ ๊ฒ€์ƒ‰ํ•ด์•ผ ํ•˜๋Š”๊ฐ€?” ๋˜๋Š” “์ด ๊ฒ€์ƒ‰๋œ ๋ฌธ์„œ๊ฐ€ ์ถฉ๋ถ„ํžˆ ์ข‹์€๊ฐ€?”๋ผ๊ณ  ๋ฌป๋Š” ๋ฒ•์„ ๋ฐฐ์›๋‹ˆ๋‹ค. Agentic RAG๋Š” ์ด ์˜์‚ฌ ๊ฒฐ์ • ํ”„๋กœ์„ธ์Šค๋ฅผ ์™ธ๋ถ€ํ™”ํ•จ์œผ๋กœ์จ ๋…ผ๋ฆฌ์ ์ธ ๋‹ค์Œ ๋‹จ๊ณ„๋ฅผ ๋ฐŸ์Šต๋‹ˆ๋‹ค. ์—์ด์ „ํŠธ ์•„ํ‚คํ…์ฒ˜์—์„œ RAG๋Š” ๋” ์ด์ƒ ์ „์ฒด ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์ด ์•„๋‹™๋‹ˆ๋‹ค. ๋Œ€์‹ , ์ž์œจ ์—์ด์ „ํŠธ๊ฐ€ ๋” ํฌ๊ณ  ๋ณต์žกํ•œ ๊ณ„ํš์˜ ์ผ๋ถ€๋กœ ์ฆ‰์„์—์„œ ์‚ฌ์šฉ, ๋ฌด์‹œ ๋˜๋Š” ๊ตฌ์„ฑํ•˜๋„๋ก ์„ ํƒํ•  ์ˆ˜ ์žˆ๋Š” ์ „๋ฌธ “๋„๊ตฌ”๊ฐ€ ๋ฉ๋‹ˆ๋‹ค. ์ด๋Š” ํ˜์‹ ์˜ ์ดˆ์ ์ด RAG ํŒŒ์ดํ”„๋ผ์ธ์˜ ๋‚ด๋ถ€ ์ž‘๋™์„ ์ตœ์ ํ™”ํ•˜๋Š” ๊ฒƒ์—์„œ ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ํ•ด๋‹น ํŒŒ์ดํ”„๋ผ์ธ์„ ์–ธ์ œ ์–ด๋–ป๊ฒŒ ๋ฐฐํฌํ• ์ง€์— ๋Œ€ํ•ด ์ถ”๋ก ํ•˜๋Š” ์—์ด์ „ํŠธ์˜ ๋Šฅ๋ ฅ์„ ์ตœ์ ํ™”ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์ด๋™ํ•˜๋Š” ํŒจ๋Ÿฌ๋‹ค์ž„ ์ „ํ™˜์„ ์‹œ์‚ฌํ•ฉ๋‹ˆ๋‹ค. ์ด ๊ถค์ ์€ RAG์˜ ์ƒํ’ˆํ™” ๋ฐ ์ถ”์ƒํ™”๋ฅผ ํ–ฅํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ฐจ์„ธ๋Œ€ ์ง€๋Šฅํ˜• ์—์ด์ „ํŠธ์˜ ํˆดํ‚ท์—์„œ ๊ธฐ๋ณธ์ ์ธ ํ˜ธ์ถœ ๊ฐ€๋Šฅ ์„œ๋น„์Šค๋กœ ์ž๋ฆฌ๋งค๊น€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.


RAG(๊ฒ€์ƒ‰ ์ฆ๊ฐ• ์ƒ์„ฑ)์ด๋ž€ ๋ฌด์—‡์ธ๊ฐ€์š”?

๊ฒ€์ƒ‰ ์ฆ๊ฐ• ์ƒ์„ฑ(RAG)์€ ์ธ๊ณต์ง€๋Šฅ(AI) ๋ชจ๋ธ์„ ์™ธ๋ถ€ ์ง€์‹ ๋ฒ ์ด์Šค์™€ ์—ฐ๊ฒฐํ•˜์—ฌ ์„ฑ๋Šฅ์„ ์ตœ์ ํ™”ํ•˜๋Š” ์•„ํ‚คํ…์ฒ˜์ž…๋‹ˆ๋‹ค. RAG๋Š” ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ๋” ๊ด€๋ จ์„ฑ ๋†’์€ ์‘๋‹ต์„ ๋” ๋†’์€ ํ’ˆ์งˆ๋กœ ์ œ๊ณตํ•˜๋„๋ก ๋•์Šต๋‹ˆ๋‹ค. ์ƒ์„ฑํ˜• AI(gen AI) ๋ชจ๋ธ์€ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ํ›ˆ๋ จ๋˜๋ฉฐ, ์ด ์ •๋ณด๋ฅผ ์ฐธ์กฐํ•˜์—ฌ ์ถœ๋ ฅ์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์…‹์€ ์œ ํ•œํ•˜๋ฉฐ AI ๊ฐœ๋ฐœ์ž๊ฐ€ ์ ‘๊ทผํ•  ์ˆ˜ ์žˆ๋Š” ์ •๋ณด(๊ณต๊ฐœ ์ €์ž‘๋ฌผ, ์ธํ„ฐ๋„ท ๊ธฐ์‚ฌ, ์†Œ์…œ ๋ฏธ๋””์–ด ์ฝ˜ํ…์ธ  ๋ฐ ๊ธฐํƒ€ ๊ณต๊ฐœ์ ์œผ๋กœ ์ ‘๊ทผ ๊ฐ€๋Šฅํ•œ ๋ฐ์ดํ„ฐ)์— ๊ตญํ•œ๋ฉ๋‹ˆ๋‹ค. RAG๋Š” ์ƒ์„ฑํ˜• AI ๋ชจ๋ธ์ด ๋‚ด๋ถ€ ์กฐ์ง ๋ฐ์ดํ„ฐ, ํ•™์ˆ ์ง€ ๋ฐ ์ „๋ฌธ ๋ฐ์ดํ„ฐ์…‹๊ณผ ๊ฐ™์€ ์ถ”๊ฐ€์ ์ธ ์™ธ๋ถ€ ์ง€์‹ ๋ฒ ์ด์Šค์— ์ ‘๊ทผํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ฉ๋‹ˆ๋‹ค. ๊ด€๋ จ ์ •๋ณด๋ฅผ ์ƒ์„ฑ ํ”„๋กœ์„ธ์Šค์— ํ†ตํ•ฉํ•จ์œผ๋กœ์จ ์ฑ—๋ด‡ ๋ฐ ๊ธฐํƒ€ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ(NLP) ๋„๊ตฌ๋Š” ์ถ”๊ฐ€ ํ›ˆ๋ จ ์—†์ด๋„ ๋” ์ •ํ™•ํ•œ ๋„๋ฉ”์ธ ํŠน์ • ์ฝ˜ํ…์ธ ๋ฅผ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

RAG์˜ ์ด์ ์€ ๋ฌด์—‡์ธ๊ฐ€์š”?

RAG๋Š” ์กฐ์ง์ด ์ƒ์„ฑํ˜• AI ๋ชจ๋ธ์„ ๋„๋ฉ”์ธ ํŠน์ • ์‚ฌ์šฉ ์‚ฌ๋ก€์— ๋งž๊ฒŒ ์กฐ์ •ํ•  ๋•Œ ๋†’์€ ์žฌํ›ˆ๋ จ ๋น„์šฉ์„ ํ”ผํ•  ์ˆ˜ ์žˆ๋„๋ก ์ง€์›ํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์—…์€ RAG๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋จธ์‹  ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ์ง€์‹ ๋ฒ ์ด์Šค ๊ฒฉ์ฐจ๋ฅผ ๋ฉ”์›Œ ๋” ๋‚˜์€ ๋‹ต๋ณ€์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. RAG์˜ ์ฃผ์š” ์ด์ ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค:

  • ๋น„์šฉ ํšจ์œจ์ ์ธ AI ๊ตฌํ˜„ ๋ฐ ํ™•์žฅ: RAG๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ๊ธฐ์—…์€ ์žฌํ›ˆ๋ จ ์—†์ด ๋‚ด๋ถ€์˜ ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐ์ดํ„ฐ ์†Œ์Šค๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์œ ์‚ฌํ•œ ๋ชจ๋ธ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ธฐ์—…์€ ๋น„์šฉ ๋ฐ ๋ฆฌ์†Œ์Šค ์š”๊ตฌ ์‚ฌํ•ญ ์ฆ๊ฐ€๋ฅผ ์™„ํ™”ํ•˜๋ฉด์„œ ํ•„์š”์— ๋”ฐ๋ผ AI ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ๊ตฌํ˜„์„ ํ™•์žฅํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  • ์ตœ์‹  ๋ฐ ๋„๋ฉ”์ธ ํŠน์ • ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์ ‘๊ทผ: RAG ์‹œ์Šคํ…œ์€ ๋ชจ๋ธ์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ณด์ถฉ์ ์ธ ์™ธ๋ถ€ ๋ฐ์ดํ„ฐ์— ์—ฐ๊ฒฐํ•˜๊ณ  ์ตœ์‹  ์ •๋ณด๋ฅผ ์ƒ์„ฑ๋œ ์‘๋‹ต์— ํ†ตํ•ฉํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์—…์€ RAG๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋…์ ์ ์ธ ๊ณ ๊ฐ ๋ฐ์ดํ„ฐ, ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ์—ฐ๊ตฌ ๋ฐ ๊ธฐํƒ€ ๊ด€๋ จ ๋ฌธ์„œ์™€ ๊ฐ™์€ ํŠน์ • ์ •๋ณด๋กœ ๋ชจ๋ธ์„ ๋ฌด์žฅ์‹œํ‚ต๋‹ˆ๋‹ค.
  • AI ํ™˜๊ฐ ํ˜„์ƒ ์œ„ํ—˜ ๊ฐ์†Œ: RAG๋Š” LLM์„ ์‚ฌ์‹ค์ ์ด๊ณ  ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ์ตœ์‹  ๋ฐ์ดํ„ฐ๋กœ ๋’ท๋ฐ›์นจ๋˜๋Š” ํŠน์ • ์ง€์‹์— ๊ณ ์ •์‹œํ‚ต๋‹ˆ๋‹ค. ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ๋งŒ์œผ๋กœ ์ž‘๋™ํ•˜๋Š” ์ƒ์„ฑ ๋ชจ๋ธ๊ณผ ๋น„๊ตํ•  ๋•Œ, RAG ๋ชจ๋ธ์€ ์™ธ๋ถ€ ๋ฐ์ดํ„ฐ์˜ ๋งฅ๋ฝ ๋‚ด์—์„œ ๋” ์ •ํ™•ํ•œ ๋‹ต๋ณ€์„ ์ œ๊ณตํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
  • ์‚ฌ์šฉ์ž ์‹ ๋ขฐ๋„ ์ฆ๊ฐ€: RAG ๋ชจ๋ธ์€ ์‘๋‹ต์˜ ์ผ๋ถ€๋กœ ์™ธ๋ถ€ ๋ฐ์ดํ„ฐ์˜ ์ง€์‹ ์†Œ์Šค์— ๋Œ€ํ•œ ์ธ์šฉ์„ ํฌํ•จํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. RAG ๋ชจ๋ธ์ด ์ถœ์ฒ˜๋ฅผ ์ธ์šฉํ•˜๋ฉด ์ธ๊ฐ„ ์‚ฌ์šฉ์ž๋Š” ํ•ด๋‹น ์ถœ๋ ฅ์„ ๊ฒ€์ฆํ•˜์—ฌ ์ •ํ™•์„ฑ์„ ํ™•์ธํ•˜๊ณ , ์ธ์šฉ๋œ ์ €์ž‘๋ฌผ์„ ์ฐธ์กฐํ•˜์—ฌ ํ›„์† ์„ค๋ช… ๋ฐ ์ถ”๊ฐ€ ์ •๋ณด๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  • ์‚ฌ์šฉ ์‚ฌ๋ก€ ํ™•๋Œ€: ๋” ๋งŽ์€ ๋ฐ์ดํ„ฐ์— ์ ‘๊ทผํ•œ๋‹ค๋Š” ๊ฒƒ์€ ํ•˜๋‚˜์˜ ๋ชจ๋ธ์ด ๋” ๋„“์€ ๋ฒ”์œ„์˜ ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ์Œ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์—…์€ ์ง€์‹ ๊ธฐ๋ฐ˜์„ ๋„“ํ˜€ ๋ชจ๋ธ์„ ์ตœ์ ํ™”ํ•˜๊ณ  ๋” ๋งŽ์€ ๊ฐ€์น˜๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋Š” ๋ชจ๋ธ์ด ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒฐ๊ณผ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋งฅ๋ฝ์„ ํ™•์žฅ์‹œํ‚ต๋‹ˆ๋‹ค.
  • ๊ฐœ๋ฐœ์ž ์ œ์–ด ๋ฐ ๋ชจ๋ธ ์œ ์ง€๋ณด์ˆ˜ ๊ฐ•ํ™”: ๊ฐœ๋ฐœ์ž์™€ ๋ฐ์ดํ„ฐ ๊ณผํ•™์ž๋Š” ์–ธ์ œ๋“ ์ง€ ๋ชจ๋ธ์ด ์ ‘๊ทผํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐ์ดํ„ฐ ์†Œ์Šค๋ฅผ ์กฐ์ •ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋ชจ๋ธ์„ ํ•œ ์ž‘์—…์—์„œ ๋‹ค๋ฅธ ์ž‘์—…์œผ๋กœ ์žฌ๋ฐฐ์น˜ํ•˜๋Š” ๊ฒƒ์€ ๋ฏธ์„ธ ์กฐ์ •์ด๋‚˜ ์žฌํ›ˆ๋ จ ๋Œ€์‹  ์™ธ๋ถ€ ์ง€์‹ ์†Œ์Šค๋ฅผ ์กฐ์ •ํ•˜๋Š” ์ž‘์—…์ด ๋ฉ๋‹ˆ๋‹ค.
  • ๋ฐ์ดํ„ฐ ๋ณด์•ˆ ๊ฐ•ํ™”: RAG๋Š” ๋ชจ๋ธ์„ ์™ธ๋ถ€ ์ง€์‹ ์†Œ์Šค์™€ ์—ฐ๊ฒฐํ•˜๋Š” ๊ฒƒ์ด์ง€ ํ•ด๋‹น ์ง€์‹์„ ๋ชจ๋ธ์˜ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์— ํ†ตํ•ฉํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ฏ€๋กœ, ๋ชจ๋ธ๊ณผ ์™ธ๋ถ€ ์ง€์‹ ์‚ฌ์ด์— ๊ตฌ๋ถ„์„ ์œ ์ง€ํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์—…์€ RAG๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ 1์ฐจ ๋ฐ์ดํ„ฐ๋ฅผ ๋ณด์กดํ•˜๋ฉด์„œ ๋™์‹œ์— ๋ชจ๋ธ์— ์ ‘๊ทผ ๊ถŒํ•œ์„ ๋ถ€์—ฌํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด ์ ‘๊ทผ ๊ถŒํ•œ์€ ์–ธ์ œ๋“ ์ง€ ์ฒ ํšŒํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

RAG ์‚ฌ์šฉ ์‚ฌ๋ก€

RAG ์‹œ์Šคํ…œ์€ ๋ณธ์งˆ์ ์œผ๋กœ ์‚ฌ์šฉ์ž๊ฐ€ ๋Œ€ํ™”ํ˜• ์–ธ์–ด๋กœ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์— ์งˆ์˜ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ฉ๋‹ˆ๋‹ค. RAG ์‹œ์Šคํ…œ์˜ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์งˆ์˜์‘๋‹ต ๋Šฅ๋ ฅ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ์‚ฌ์šฉ ์‚ฌ๋ก€์— ์ ์šฉ๋˜์—ˆ์Šต๋‹ˆ๋‹ค:

  • ํŠนํ™”๋œ ์ฑ—๋ด‡ ๋ฐ ๊ฐ€์ƒ ๋น„์„œ: RAG AI ์‹œ์Šคํ…œ์€ ๋ชจ๋ธ์„ ๋‚ด๋ถ€ ๋ฐ์ดํ„ฐ์— ์—ฐ๊ฒฐํ•˜์—ฌ ๊ณ ๊ฐ ์ง€์› ์ฑ—๋ด‡์— ํšŒ์‚ฌ์˜ ์ œํ’ˆ, ์„œ๋น„์Šค ๋ฐ ์ •์ฑ…์— ๋Œ€ํ•œ ์ตœ์‹  ์ง€์‹์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.
  • ์—ฐ๊ตฌ: ๋‚ด๋ถ€ ๋ฌธ์„œ๋ฅผ ์ฝ๊ณ  ๊ฒ€์ƒ‰ ์—”์ง„๊ณผ ์ƒํ˜ธ ์ž‘์šฉํ•  ์ˆ˜ ์žˆ๋Š” RAG ๋ชจ๋ธ์€ ์—ฐ๊ตฌ์— ํƒ์›”ํ•ฉ๋‹ˆ๋‹ค. ๊ธˆ์œต ๋ถ„์„๊ฐ€๋Š” ์ตœ์‹  ์‹œ์žฅ ์ •๋ณด์™€ ์ด์ „ ํˆฌ์ž ํ™œ๋™์„ ๋ฐ”ํƒ•์œผ๋กœ ๊ณ ๊ฐ๋ณ„ ๋ณด๊ณ ์„œ๋ฅผ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์˜๋ฃŒ ์ „๋ฌธ๊ฐ€๋Š” ํ™˜์ž ๋ฐ ๊ธฐ๊ด€ ๊ธฐ๋ก๊ณผ ์ƒํ˜ธ ์ž‘์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  • ์ฝ˜ํ…์ธ  ์ƒ์„ฑ: RAG ๋ชจ๋ธ์ด ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ์ถœ์ฒ˜๋ฅผ ์ธ์šฉํ•˜๋Š” ๋Šฅ๋ ฅ์€ ๋” ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ์ฝ˜ํ…์ธ  ์ƒ์„ฑ์œผ๋กœ ์ด์–ด์งˆ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  • ์‹œ์žฅ ๋ถ„์„ ๋ฐ ์ œํ’ˆ ๊ฐœ๋ฐœ: ๋น„์ฆˆ๋‹ˆ์Šค ๋ฆฌ๋”๋Š” ์†Œ์…œ ๋ฏธ๋””์–ด ๋™ํ–ฅ, ๊ฒฝ์Ÿ์‚ฌ ํ™œ๋™, ๋ถ€๋ฌธ ๊ด€๋ จ ์†๋ณด ๋ฐ ๊ธฐํƒ€ ์˜จ๋ผ์ธ ์†Œ์Šค๋ฅผ ์ฐธ์กฐํ•˜์—ฌ ๋น„์ฆˆ๋‹ˆ์Šค ๊ฒฐ์ •์„ ๋” ์ž˜ ๋‚ด๋ฆด ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  • ์ง€์‹ ์—”์ง„: RAG ์‹œ์Šคํ…œ์€ ์ง์›๋“ค์—๊ฒŒ ๋‚ด๋ถ€ ํšŒ์‚ฌ ์ •๋ณด๋กœ ๊ถŒํ•œ์„ ๋ถ€์—ฌํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ฐ„์†Œํ™”๋œ ์˜จ๋ณด๋”ฉ ํ”„๋กœ์„ธ์Šค, ๋” ๋น ๋ฅธ HR ์ง€์› ๋ฐ ํ˜„์žฅ ์ง์›์„ ์œ„ํ•œ ์ฃผ๋ฌธํ˜• ์ง€์นจ์€ ๊ธฐ์—…์ด RAG๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ง๋ฌด ์„ฑ๊ณผ๋ฅผ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ๋ช‡ ๊ฐ€์ง€ ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค.
  • ์ถ”์ฒœ ์„œ๋น„์Šค: ์ด์ „ ์‚ฌ์šฉ์ž ํ–‰๋™์„ ๋ถ„์„ํ•˜๊ณ  ํ˜„์žฌ ์ œ๊ณต๋˜๋Š” ๊ฒƒ๊ณผ ๋น„๊ตํ•จ์œผ๋กœ์จ RAG ์‹œ์Šคํ…œ์€ ๋” ์ •ํ™•ํ•œ ์ถ”์ฒœ ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.

RAG๋Š” ์–ด๋–ป๊ฒŒ ์ž‘๋™ํ•˜๋‚˜์š”?

RAG๋Š” ์ •๋ณด ๊ฒ€์ƒ‰ ๋ชจ๋ธ๊ณผ ์ƒ์„ฑํ˜• AI ๋ชจ๋ธ์„ ๊ฒฐํ•ฉํ•˜์—ฌ ๋” ๊ถŒ์œ„ ์žˆ๋Š” ์ฝ˜ํ…์ธ ๋ฅผ ์ƒ์„ฑํ•จ์œผ๋กœ์จ ์ž‘๋™ํ•ฉ๋‹ˆ๋‹ค. RAG ์‹œ์Šคํ…œ์€ ์ง€์‹ ๋ฒ ์ด์Šค์— ์งˆ์˜ํ•˜๊ณ  ์‚ฌ์šฉ์ž ํ”„๋กฌํ”„ํŠธ์— ๋” ๋งŽ์€ ์ปจํ…์ŠคํŠธ๋ฅผ ์ถ”๊ฐ€ํ•œ ํ›„ ์‘๋‹ต์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.

RAG ์‹œ์Šคํ…œ์€ 5๋‹จ๊ณ„ ํ”„๋กœ์„ธ์Šค๋ฅผ ๋”ฐ๋ฆ…๋‹ˆ๋‹ค:

  1. ์‚ฌ์šฉ์ž๊ฐ€ ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ œ์ถœํ•ฉ๋‹ˆ๋‹ค.
  2. ์ •๋ณด ๊ฒ€์ƒ‰ ๋ชจ๋ธ์ด ๊ด€๋ จ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด ์ง€์‹ ๋ฒ ์ด์Šค์— ์งˆ์˜ํ•ฉ๋‹ˆ๋‹ค.
  3. ๊ด€๋ จ ์ •๋ณด๊ฐ€ ์ง€์‹ ๋ฒ ์ด์Šค์—์„œ ํ†ตํ•ฉ ๊ณ„์ธต์œผ๋กœ ๋ฐ˜ํ™˜๋ฉ๋‹ˆ๋‹ค.
  4. RAG ์‹œ์Šคํ…œ์€ ๊ฒ€์ƒ‰๋œ ๋ฐ์ดํ„ฐ์˜ ํ–ฅ์ƒ๋œ ์ปจํ…์ŠคํŠธ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ LLM์— ์ฆ๊ฐ•๋œ ํ”„๋กฌํ”„ํŠธ๋ฅผ ์„ค๊ณ„ํ•ฉ๋‹ˆ๋‹ค.
  5. LLM์ด ์ถœ๋ ฅ์„ ์ƒ์„ฑํ•˜๊ณ  ์‚ฌ์šฉ์ž์—๊ฒŒ ์ถœ๋ ฅ์„ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค.

์ด ๊ณผ์ •์€ RAG๊ฐ€ ์–ด๋–ป๊ฒŒ ๊ทธ ์ด๋ฆ„์„ ์–ป์—ˆ๋Š”์ง€ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. RAG ์‹œ์Šคํ…œ์€ ์ง€์‹ ๋ฒ ์ด์Šค์—์„œ ๋ฐ์ดํ„ฐ๋ฅผ **๊ฒ€์ƒ‰(retrieve)**ํ•˜๊ณ , ์ถ”๊ฐ€๋œ ์ปจํ…์ŠคํŠธ๋กœ ํ”„๋กฌํ”„ํŠธ๋ฅผ **์ฆ๊ฐ•(augment)**ํ•˜๋ฉฐ, ์‘๋‹ต์„ **์ƒ์„ฑ(generate)**ํ•ฉ๋‹ˆ๋‹ค.

RAG ์‹œ์Šคํ…œ์˜ ๊ตฌ์„ฑ ์š”์†Œ

RAG ์‹œ์Šคํ…œ์—๋Š” ๋„ค ๊ฐ€์ง€ ์ฃผ์š” ๊ตฌ์„ฑ ์š”์†Œ๊ฐ€ ํฌํ•จ๋ฉ๋‹ˆ๋‹ค:

  • ์ง€์‹ ๋ฒ ์ด์Šค: ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ์™ธ๋ถ€ ๋ฐ์ดํ„ฐ ์ €์žฅ์†Œ.
  • ๊ฒ€์ƒ‰๊ธฐ(Retriever): ๊ด€๋ จ ๋ฐ์ดํ„ฐ๋ฅผ ์œ„ํ•ด ์ง€์‹ ๋ฒ ์ด์Šค๋ฅผ ๊ฒ€์ƒ‰ํ•˜๋Š” AI ๋ชจ๋ธ.
  • ํ†ตํ•ฉ ๊ณ„์ธต: ์ „์ฒด ๊ธฐ๋Šฅ์„ ์กฐ์ •ํ•˜๋Š” RAG ์•„ํ‚คํ…์ฒ˜์˜ ์ผ๋ถ€.
  • ์ƒ์„ฑ๊ธฐ(Generator): ์‚ฌ์šฉ์ž ์ฟผ๋ฆฌ ๋ฐ ๊ฒ€์ƒ‰๋œ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ถœ๋ ฅ์„ ์ƒ์„ฑํ•˜๋Š” ์ƒ์„ฑํ˜• AI ๋ชจ๋ธ.

RAG์™€ ๋ฏธ์„ธ ์กฐ์ •์˜ ์ฐจ์ด์ ์€ ๋ฌด์—‡์ธ๊ฐ€์š”?

RAG์™€ ๋ฏธ์„ธ ์กฐ์ •์˜ ์ฐจ์ด์ ์€ RAG๋Š” LLM์ด ์™ธ๋ถ€ ๋ฐ์ดํ„ฐ ์†Œ์Šค์— ์งˆ์˜ํ•˜๋„๋ก ํ•˜๋Š” ๋ฐ˜๋ฉด, ๋ฏธ์„ธ ์กฐ์ •์€ LLM์„ ๋„๋ฉ”์ธ ํŠน์ • ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด ํ›ˆ๋ จ์‹œํ‚จ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๋‘˜ ๋‹ค ์ง€์ •๋œ ๋„๋ฉ”์ธ์—์„œ LLM์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋™์ผํ•œ ์ผ๋ฐ˜์ ์ธ ๋ชฉํ‘œ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. RAG์™€ ๋ฏธ์„ธ ์กฐ์ •์€ ์ข…์ข… ๋Œ€์กฐ๋˜์ง€๋งŒ ํ•จ๊ป˜ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋ฏธ์„ธ ์กฐ์ •์€ ์˜๋„๋œ ๋„๋ฉ”์ธ ๋ฐ ์ถœ๋ ฅ ์š”๊ตฌ ์‚ฌํ•ญ์— ๋Œ€ํ•œ ๋ชจ๋ธ์˜ ์นœ์ˆ™๋„๋ฅผ ๋†’์ด๋Š” ๋ฐ˜๋ฉด, RAG๋Š” ๋ชจ๋ธ์ด ๊ด€๋ จ์„ฑ ๋†’๊ณ  ๊ณ ํ’ˆ์งˆ์˜ ์ถœ๋ ฅ์„ ์ƒ์„ฑํ•˜๋Š” ๋ฐ ๋„์›€์„ ์ค๋‹ˆ๋‹ค.

Leave a Comment

Your email address will not be published. Required fields are marked *